Skip to main content
Log in

Crosstalk between catecholamines and erythropoiesis

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages.

Objective

This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis.

Methods

Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.”

Results

Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis.

Conclusion

Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An X, Mohandas N (2011). Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol, 93(2): 139–143

    Article  PubMed  Google Scholar 

  • Antonijevic N, Nesovic M, Trbojevic B, Milosevic R (1999). Anemia in hypothyroidism. Med Pregl, 52(3–5): 136–140

    CAS  PubMed  Google Scholar 

  • Arranz L, Méndez-Ferrer S (2013). Network anatomy and in vivo physiology of mesenchymal stem and stromal cells. Inflamm Regen, 33:038-04

  • Artico M, Bosco S, Cavallotti C, Agostinelli E, Giuliani-Piccari G, Sciorio S, Cocco L, Vitale M (2002). Noradrenergic and cholinergic innervation of the bone marrow. Int J Mol Med, 10(1): 77–80

    CAS  PubMed  Google Scholar 

  • Baron M H, Vacaru A, Nieves J (2013). Erythroid development in the mammalian embryo. Blood Cells Mol Dis, 51(4): 213–219

    Article  CAS  PubMed  Google Scholar 

  • Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt H M, Steinlein P, Schütz G, Beug H (1999). The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev, 13(22): 2996–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beguin Y, Jaspers A (2014). Iron sucrose- characteristics, efficacy and regulatory aspects of an established treatment of iron deficiency and iron-deficiency anemia in a broad range of therapeutic areas. Expert Opin Pharmacother, 15(14): 2087–2103

    Article  CAS  PubMed  Google Scholar 

  • Boer A K, Drayer A L, Rui H, Vellenga E (2002). Prostaglandin-E2 enhances EPO-mediated STAT5 transcriptional activity by serine phosphorylation of CREB. Blood, 100(2): 467–473

    Article  CAS  PubMed  Google Scholar 

  • Boer A K, Drayer A L, Vellenga E (2003). cAMP/PKA-mediated regulation of erythropoiesis. Leuk Lymphoma, 44(11): 1893–1901

    Article  CAS  PubMed  Google Scholar 

  • Böhmer R M (2004). IL-3-dependent early erythropoiesis is stimulated by autocrine transforming growth factor beta. Stem Cells, 22(2): 216–224

    Article  PubMed  Google Scholar 

  • Brown S W, Meyers R T, Brennan K M, Rumble J M, Narasimhachari N, Perozzi E F, Ryan J J, Stewart J K, Fischer-Stenger K (2003). Catecholamines in a macrophage cell line. J Neuroimmunol, 135(1-2): 47–55

    Article  CAS  PubMed  Google Scholar 

  • Burdach S E, Levitt L J (1987). Receptor-specific inhibition of bone marrow erythropoiesis by recombinant DNA-derived interleukin-2. Blood, 69(5): 1368–1375

    CAS  PubMed  Google Scholar 

  • Chasis J A, Mohandas N (2008). Erythroblastic islands: niches for erythropoiesis. Blood, 112(3): 470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Zhang G (2001). Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp Hematol, 29(8): 971–980

    Article  CAS  PubMed  Google Scholar 

  • Cheung J Y, Miller B A (2001). Molecular mechanisms of erythropoietin signaling. Nephron, 87(3): 215–222

    Article  CAS  PubMed  Google Scholar 

  • Choobineh H, Dehghani S, Alizadeh S, Dana V G, Saiepour N, Meshkani R, Einollahi N (2009). Evaluation of Leptin Levels in Major beta-Thalassemic Patients. Int J Hematol Oncol Stem Cell Res, 3(4): 1–4

    Google Scholar 

  • Chuang T T, Sallese M, Ambrosini G, Parruti G, De Blasi A (1992). High expression of beta-adrenergic receptor kinase in human peripheral blood leukocytes. Isoproterenol and platelet activating factor can induce kinase translocation. J Biol Chem, 267(10): 6886–6892

    CAS  PubMed  Google Scholar 

  • Claycombe K, King L E, Fraker P J (2008). A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci U S A, 105(6): 2017–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole S W, Sood A K (2012). Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res, 18(5): 1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Bombelli R, Ferrari M, Marino F, Rasini E, Maestroni G J M, Conti A, Boveri M, Lecchini S, Frigo G (2000). HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci, 68(3): 283–295

    Article  CAS  PubMed  Google Scholar 

  • Cremaschi G A, Gorelik G, Klecha A J, Lysionek A E, Genaro A M (2000). Chronic stress influences the immune system through the thyroid axis. Life Sci, 67(26): 3171–3179

    Article  CAS  PubMed  Google Scholar 

  • Dart A M, Du X J, Kingwell, B A (2002). Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res, 53(3):678–687

    Article  CAS  PubMed  Google Scholar 

  • Donahue R E, Yang Y C, Clark S C (1990). Human P40 T-cell growth factor (interleukin-9) supports erythroid colony formation. Blood, 75(12): 2271–2275

    CAS  PubMed  Google Scholar 

  • Elenkov I J, Chrousos G P (1999). Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab, 10(9): 359–368

    Article  CAS  PubMed  Google Scholar 

  • Elenkov I J, Chrousos G P (2002). Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci, 966(1): 290–303

    Article  CAS  PubMed  Google Scholar 

  • Elhassan I O, Hannoush E J, Sifri Z C, Jones E, AlzateWD, Rameshwar P, Livingston D H, Mohr A M (2011). Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock. Surg Infect (Larchmt), 12(4): 273–278

    Article  Google Scholar 

  • Farmer P, Pugin J (2000). b-adrenergic agonists exert their “antiinflammatory” effects in monocytic cells through the IkappaB/NFkappaB pathway. Am J Physiol Lung Cell Mol Physiol, 279(4): L675–L682

    CAS  PubMed  Google Scholar 

  • Fink G D, Paulo L G, Fisher J W (1975). Effects of beta adrenergic blocking agents on erythropoietin production in rabbits exposed to hypoxia. J Pharmacol Exp Ther, 193(1): 176–181

    CAS  PubMed  Google Scholar 

  • Fitch S R, Kimber G M, Wilson N K, Parker A, Mirshekar-Syahkal B, Göttgens B, Medvinsky A, Dzierzak E, Ottersbach K (2012). Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell, 11(4): 554–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flierl M A, Rittirsch D, Nadeau B A, Sarma J V, Day D E, Lentsch A B, Huber-Lang M S, Ward P A (2009). Upregulation of phagocytederived catecholamines augments the acute inflammatory response. PLoS One, 4(2): e4414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonseca R B, Mohr A M, Wang L, Sifri Z C, Rameshwar P, Livingston D H (2005). The impact of a hypercatecholamine state on erythropoiesis following severe injury and the role of IL-6. J Trauma, 59(4): 884–889, discussion 889–890

    Article  CAS  PubMed  Google Scholar 

  • Francis K T (1981). The relationship between high and low trait psychological stress, serum testosterone, and serum cortisol. Experientia, 37(12): 1296–1297

    Article  CAS  PubMed  Google Scholar 

  • Freudenthaler S M, Schenck T, Lucht I, Gleiter C H (1999). Fenoterol stimulates human erythropoietin production via activation of the renin angiotensin system. Br J Clin Pharmacol, 48(4): 631–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furmanski P, Johnson C S (1990). Macrophage control of normal and leukemic erythropoiesis: identification of the macrophage-derived erythroid suppressing activity as interleukin-1 and the mediator of its in vivo action as tumor necrosis factor. Blood, 75(12): 2328–2334

    CAS  PubMed  Google Scholar 

  • Ge X H, Zhu G J, Geng D Q, Zhang Z J, Liu C F (2012). Erythropoietin attenuates 6-hydroxydopamine-induced apoptosis via glycogen synthase kinase 3ß-mediated mitochondrial translocation of Bax in PC12 cells. Neurol Sci, 33(6): 1249–1256

    Article  PubMed  Google Scholar 

  • Gebhard C, Petroktistis F, Zhang H, Kammerer D, Köhle C, Klingel K, Albinus M, Gleiter C H, Osswald H, Grenz A (2006). Role of renal nerves and salt intake on erythropoietin secretion in rats following carbon monoxide exposure. J Pharmacol Exp Ther, 319(1): 111–116

    Article  CAS  PubMed  Google Scholar 

  • Glass N E, Kaltenbach L A, Fleming S B, Arbogast P G, Cotton B A (2012). The impact of beta-blocker therapy on anemia after traumatic brain injury. Transfusion, 52(10): 2155–2160

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Bachman E, Li M, Roy C N, Blusztajn J, Wong S, Chan S Y, Serra C, Jasuja R, Travison T G, Muckenthaler M U, Nemeth E, Bhasin S (2013). Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell, 12(2): 280–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajifathali A, Saba F, Atashi A, Soleimani M, Mortaz E, Rasekhi M (2014). The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res, 358(3): 651–665

    Article  CAS  PubMed  Google Scholar 

  • Hamill R W, Schroeder B (1990). Hormonal regulation of adult sympathetic neurons: the effects of castration on neuropeptide Y, norepinephrine, and tyrosine hydroxylase activity. J Neurobiol, 21(5): 731–742

    Article  CAS  PubMed  Google Scholar 

  • Hattangadi S M, Wong P, Zhang L, Flygare J, Lodish H F(2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood, 118(24): 6258–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetier E, Ayala J 1, Boußseau A, Prochiantz A 1 (1991). Modulation of interleukin-1 and tumor necrosis factor expression by ß-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res, 86(2): 407–413

    Article  CAS  PubMed  Google Scholar 

  • Huntgeburth M, Tiemann K, Shahverdyan R, Schlüter K D, Schreckenberg R, Großs M L, Mödersheim S, Caglayan E, Müller-Ehmsen J, Ghanem A, Vantler M, Zimmermann W H, Böhm M, Rosenkranz S (2011). Transforming growth factor ß1 oppositely regulates the hypertrophic and contractile response to ß-adrenergic stimulation in the heart. PLoS One, 6(11): e26628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikuyama S (2005). Effects of thyroid hormone on hematopoiesis. Nihon Rinsho, 63(Suppl 10): 84–87

    PubMed  Google Scholar 

  • Isern J, Méndez-Ferrer S (2011). Stem cell interactions in a bone marrow niche. Curr Osteoporos Rep, 9(4): 210–218

    Article  PubMed  Google Scholar 

  • Jewell M, Breyer R M, Currie K P (2012). Bidirectional regulation of adrenal catecholamine release by prostaglandin E2. FASEB J, 26(1): 879.876

    Google Scholar 

  • Kahn B B, Minokoshi Y (2013). Leptin, GABA, and glucose control. Cell Metab, 18(3): 304–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinkovich A, Spiegel A, Shivtiel S, Kollet O, Jordaney N, Piacibello W, Lapidot T (2009). Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34 + cells by the nervous system. Brain Behav Immun, 23(8): 1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Kaneko K, Furuyama K, Aburatani H, Shibahara S (2009). Hypoxia induces erythroid-specific 5-aminolevulinate synthase expreßsion in human erythroid cells through transforming growth factor-ß signaling. FEBS J, 276(5): 1370–1382

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Battista M, Kao WM, Hidalgo A, Peired A J, Thomas S A, Frenette P S (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2): 407–421

    Article  CAS  PubMed  Google Scholar 

  • Kefaloyianni E, Gaitanaki C, Beis I (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal, 18(12): 2238–2251

    Article  CAS  PubMed  Google Scholar 

  • Kelesidis T, Kelesidis I, Chou S, Mantzoros C S (2010). Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med, 152(2): 93–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilroy G E, Foster S J, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow J W, Stricker D M, Potiny S, Green P, Halvorsen Y D C, Cheatham B, Storms R W, Gimble JM(2007). Cytokine profile of human adiposederived stem cells: expression of angiogenic, hematopoietic, and proinflammatory factors. J Cell Physiol, 212(3): 702–709

    Article  CAS  PubMed  Google Scholar 

  • Kim Y J, Hur E M, Park T J, Kim K T (2000). Nongenomic inhibition of catecholamine secretion by 17beta-estradiol in PC12 cells. J Neurochem, 74(6): 2490–2496

    Article  CAS  PubMed  Google Scholar 

  • Knutson K L, Spiegel K, Penev P, Van Cauter E (2007). The metabolic consequences of sleep deprivation. Sleep Med Rev, 11(3): 163–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuçi Z, Seitz G, Kuçi S, Kreyenberg H, Schumm M, Lang P, Niethammer D, Handgretinger R, Bruchelt G (2006). Pitfalls in detection of contaminating neuroblastoma cells by tyrosine hydroxylase RT-PCR due to catecholamine-producing hematopoietic cells. Anticancer Res, 26(3A): 2075–2080

    PubMed  Google Scholar 

  • Laharrague P, Larrouy D, Fontanilles A M, Truel N, Campfield A, Tenenbaum R, Galitzky J, Corberand J X, Pénicaud L, Casteilla L (1998). High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J, 12(9): 747–752

    CAS  PubMed  Google Scholar 

  • Lambert L A, Perri H, Halbrooks P J, Mason A B (2005). Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol, 142(2): 129–141

    Article  PubMed  CAS  Google Scholar 

  • Leng H M J, Kidson S H, Keraan M M, Randall G W, Folb P I (1996). Cytokine-mediated inhibition of erythropoietin synthesis by dexamethasone. J Pharm Pharmacol, 48(9): 971–974

    Article  CAS  PubMed  Google Scholar 

  • Leung P, Gidari A S, (1981). Glucocorticoids inhibit erythroid colony formation by murine fetal liver erythroid progenitor cells in vitro. Endocrinology, 108(5): 1787–1794

    Article  CAS  PubMed  Google Scholar 

  • Maestroni G J, Cosentino M, Marino F, Togni M, Conti A, Lecchini S, Frigo G (1998). Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp Hematol, 26(12): 1172–1177

    CAS  PubMed  Google Scholar 

  • Magiakou M A, Smyrnaki P, Chrousos G P (2006). Hypertension in Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab, 20(3): 467–482

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Nagao M, Takahata K, Konishi Y, Gallyas F Jr, Tabira T, Sasaki R (1993). Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem, 268(15): 11208–11216

    CAS  PubMed  Google Scholar 

  • McCranor B J, Kim M J, Cruz N M, Xue Q L, Berger A E, Walston J D, Civin C I, Roy C N (2014). Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis, 52(2–3): 126–133

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Yin N, Jin X, He J, Yin Z (2013). The regulatory role of the adrenergic agonists phenylephrine and isoproterenol on fetal hemoglobin expression and erythroid differentiation. Endocrinology, 154(12): 4640–4649

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Ferrer S, Battista M, Frenette P S (2010). Cooperation of beta (2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci, 1192(1): 139–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Méndez-Ferrer S, Michurina T V, Ferraro F, Mazloom A R, Macarthur B D, Lira S A, Scadden D T, Ma’ayan A, Enikolopov G N, Frenette P S (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308): 829–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikhail A A, Beck E X, Shafer A, Barut B, Smith Gbur J, Zupancic T J, Snodgrass H R (1997). Leptin stimulates fetal and adult erythroid and myeloid development. Blood, 89(5):1507–1512

    CAS  PubMed  Google Scholar 

  • Miller A H, Maletic V, Raison C L (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry, 65(9): 732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mladenovic J, Adamson J W (1984). Adrenergic modulation of erythropoiesis: in vitro studies of colony-forming cells in normal and polycythaemic man. Br J Haematol, 56(2): 323–332

    Article  CAS  PubMed  Google Scholar 

  • Moura I C, Hermine O, Lacombe C, Mayeux P (2015). Erythropoiesis and transferrin receptors. Curr Opin Hematol, 22(3): 193–198

    Article  CAS  PubMed  Google Scholar 

  • Muta K, Krantz S, Bondurant M, Dai C (1995). Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood, 86(2):572–580

    CAS  PubMed  Google Scholar 

  • Nardelli J, Thiesson D, Fujiwara Y, Tsai F Y, Orkin S H (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev Biol, 210(2): 305–321

    Article  CAS  PubMed  Google Scholar 

  • Nemeth E, Valore E V, Territo M, Schiller G, Lichtenstein A, Ganz T (2003). Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood, 101(7): 2461–2463

    Article  CAS  PubMed  Google Scholar 

  • Nezu M, Souma T, Yamamoto M (2014). Renal erythropoietinproducing cells and kidney disease. Nihon Rinsho, 72(9): 1691–1700 (Renal erythropoietin-producing cells and kidney disease)

    PubMed  Google Scholar 

  • Obayashi K, Ando Y, Terazaki H, Yamashita T, Nakamura M, Suga M, Uchino M, Ando M (2000). Mechanism of anemia associated with autonomic dysfunction in rats. Auton Neurosci, 82(3): 123–129

    Article  CAS  PubMed  Google Scholar 

  • Oddo M, Levine J M, Kumar M, Iglesias K, Frangos S, Maloney-Wilensky E, Le Roux P D (2012). Anemia and brain oxygen after severe traumatic brain injury. Intensive Care Med, 38(9): 1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Oehler L, Kollars M, Bohle B, Berer A, Reiter E, Lechner K, Geissler K (1999). Interleukin-10 inhibits burst-forming unit-erythroid growth by suppression of endogenous granulocyte-macrophage colonystimulating factor production from T cells. Exp Hematol, 27(2): 217–223

    Article  CAS  PubMed  Google Scholar 

  • Otero M, Lago R, Lago F, Casanueva F F, Dieguez C, Gómez-Reino J J, Gualillo O (2005). Leptin, from fat to inflammation: old questions and new insights. FEBS Lett, 579(2): 295–301

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi P P, Roth M E, Karis A, Leonard M W, Dzierzak E, Grosveld F G, Engel J D, Lindenbaum M H (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet, 11(1): 40–44

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti L V, Cook K M, Sifri Z C, Alzate W D, Livingston D H, Mohr A M (2014). Do all ß-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock? J Trauma Acute Care Surg, 76(4): 970–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeling P, Dawson B, Goodman C, Landers G, Trinder D (2008). Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol, 103(4): 381–391

    Article  CAS  PubMed  Google Scholar 

  • Penn A, Mohr A M, Shah S G, Sifri Z C, Kaiser V L, Rameshwar P, Livingston D H (2010). Dose-response relationship between norepinephrine and erythropoiesis: evidence for a critical threshold. J Surg Res, 163(2): e85–e90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peruzzo D C, Benatti B B, Antunes I B, Andersen M L, Sallum E A, Casati MZ, Nociti F H Jr, Nogueira-Filho G R (2008). Chronic stress may modulate periodontal disease: a study in rats. J Periodontol, 79(4): 697–704

    Article  CAS  PubMed  Google Scholar 

  • Popovic WJ, Brown J E, Adamson JW (1977). The influence of thyroid hormones on in vitro erythropoiesis. Mediation by a receptor with beta adrenergic properties. J Clin Invest, 60(4): 907–913

    CAS  PubMed  Google Scholar 

  • Provalova N V, Skurikhin E G, Pershina O V, Minakova M Y, Suslov N I, Dygai A M (2003). Possible mechanisms underlying the effect of natural preparations on erythropoiesis under conditions of conflict situation. Bull Exp Biol Med, 136(2): 165–169

    Article  CAS  PubMed  Google Scholar 

  • Provalova N V, Skurikhin E G, Pershina O V, Suslov N I, Minakova M Y, Dygai A M, Gol’dberg E D (2002). Mechanisms underling the effects of adaptogens on erythropoiesis during paradoxical sleep deprivation. Bull Exp Biol Med, 133(5): 428–432

    Article  CAS  PubMed  Google Scholar 

  • Quesniaux V F, Clark S C, Turner K, Fagg B (1992). Interleukin-11 stimulates multiple phases of erythropoiesis in vitro. Blood, 80(5): 1218–1223

    CAS  PubMed  Google Scholar 

  • Ricci M R, Lee M J, Russell C D, Wang Y, Sullivan S, Schneider S H, Fried S K (2005). Isoproterenol decreases leptin release from rat and human adipose tissue through posttranscriptional mechanisms. Am J Physiol Endocrinol Metab. 288(4): E798–804

    Article  CAS  PubMed  Google Scholar 

  • Rivier C, Vale W, Brown M (1989). In the rat, interleukin-1 a and-ß stimulate adrenocorticotropin and catecholamine release. Endocrinology, 125(6): 3096–3102

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum D M, Rasmussen S G, Kobilka B K (2009). The structure and function of G-protein- receptors. Nature, 459(7245): 356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio-Perez J M, Morillcoupledas-Ruiz J M (2012). A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorld- Journal, 2012: 756357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rusten L S, Jacobsen S E (1995). Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood, 85(4): 989–996

    CAS  PubMed  Google Scholar 

  • Saba F, Soleimani M, Atashi A, Mortaz E, Shahjahani M, Roshandel E, Jaseb K, Saki N (2013). The role of the nervous system in hematopoietic stem cell mobilization. Lab Hematol, 19(3): 8–16

    Article  PubMed  Google Scholar 

  • Sánchez-Aguilera A, Arranz L, Martín-Pérez D, García-García A, Stavropoulou V, Kubovcakova L, Isern J, Martín-Salamanca S, Langa X, Skoda R C, Schwaller J, Méndez-Ferrer S (2014). Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell Stem Cell, 15(6): 791–804

    Article  PubMed  CAS  Google Scholar 

  • Sandrini S M, Shergill R, Woodward J, Muralikuttan R, Haigh R D, Lyte M, Freestone P P (2010). Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol, 192(2): 587–594

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Chaovapong W, Matthews DJ, Karkaria C, Cass R T, Zhan H, Boyle M, Lorenzini T, Elliott S G, Giebel L B.(1997). Homodimerization of erythropoietin receptor by a bivalent monoclonal antibody triggers cell proliferation and differentiation of erythroid precursors. Blood, 89(2):473–482

    CAS  PubMed  Google Scholar 

  • Scholz H, Schurek H J, Eckardt K U, Kurtz A, Bauer C (1991). Oxygendependent erythropoietin production by the isolated perfused rat kidney. Pflugers Arch, 418(3): 228–233

    Article  CAS  PubMed  Google Scholar 

  • Schraml E, Fuchs R, Kotzbeck P, Grillari J, Schauenstein K (2009). Acute adrenergic stress inhibits proliferation of murine hematopoietic progenitor cells via p38/MAPK signaling. Stem Cells Dev, 18(2): 215–227

    Article  CAS  PubMed  Google Scholar 

  • Schulte H M, Bamberger C M, Elsen H, Herrmann G, Bamberger A M, Barth J (1994). Systemic interleukin-1 a and interleukin-2 secretion in response to acute stress and to corticotropin-releasing hormone in humans. Eur J Clin Invest, 24(11): 773–777

    Article  CAS  PubMed  Google Scholar 

  • Silva J E, Bianco S D (2008). Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid, 18(2): 157–165

    Article  CAS  PubMed  Google Scholar 

  • Silverboard H, Aisiku I, Martin G S, Adams M, Rozycki G, Moss M (2005). The role of acute blood transfusion in the development of acute respiratory distress syndrome in patients with severe trauma. J Trauma, 59(3): 717–723

    PubMed  Google Scholar 

  • Skurikhin E G, Dygai A M, Provalova N V, Minakova M Y, Suslov N I (2005). Mechanisms of regulation of erythropoiesis during experimental neuroses. Bull Exp Biol Med, 139(5): 543–549

    Article  CAS  PubMed  Google Scholar 

  • Skurikhin E G, Pershina O V, Minakova MY, Ermakova N N, Firsova T V, Dygai A M, Gol’dberg E D (2008). Adrenergic regulation of erythropoiesis during cytostatic-induced myelosuppressions. Bull Exp Biol Med, 146(4): 405–410

    Article  CAS  PubMed  Google Scholar 

  • Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P, Azaria Y, Resnick I, Hardan I, Ben-Hur H, Nagler A, Rubinstein M, Lapidot T (2007). Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol, 8(10): 1123–1131

    Article  CAS  PubMed  Google Scholar 

  • Stark J L, Avitsur R, Padgett D A, Campbell K A, Beck F M, Sheridan J F (2001). Social stress induces glucocorticoid resistance in macrophages. Am J Physiol Regul Integr Comp Physiol, 280(6): R1799–R1805

    CAS  PubMed  Google Scholar 

  • Stellacci E, Di Noia A, Di Baldassarre A, Migliaccio G, Battistini A, Migliaccio A R (2009). Interaction between the glucocorticoid and erythropoietin receptors in human erythroid cells. Exp Hematol, 37(5): 559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan K S, Nackley A G, Satterfield K, Maixner W, Diatchenko L, Flood P M (2007). b2 adrenergic receptor activation stimulates proinflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal, 19(2): 251–260

    Article  CAS  PubMed  Google Scholar 

  • Togo M, Tsukamoto K, Satoh H, Hara M, Futamura A, Nakarai H, Nakahara K, Hashimoto Y (1999). Relationship between levels of leptin and hemoglobin in Japanese men. Blood, 93(12): 4444–4445

    CAS  PubMed  Google Scholar 

  • Tsarovina K, Pattyn A, Stubbusch J, Müller F, van der Wees J, Schneider C, Brunet J F, Rohrer H (2004). Essential role of Gata transcription factors in sympathetic neuron development. Development, 131(19): 4775–4786

    Article  CAS  PubMed  Google Scholar 

  • Tsiftsoglou A S, Gusella J F, Volloch V, Housman D E (1979). Inhibition by dexamethasone of commitment to erythroid differentiation in murine erythroleukemia cells. Cancer Res, 39(10): 3849–3855

    CAS  PubMed  Google Scholar 

  • Tsigos C, Chrousos G P (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res, 53(4): 865–871

    Article  PubMed  Google Scholar 

  • Unlap T, Jope R S (1995). Inhibition of NFkB DNA binding activity by glucocorticoids in rat brain. Neurosci Lett, 198(1): 41–44

    Article  CAS  PubMed  Google Scholar 

  • Vanasse G J, Jeong J Y, Tate J, Bathulapalli H, Anderson D, Steen H, Fleming M, Mattocks K, Telenti A, Fellay J, Justice A C, Berliner N (2011). A polymorphism in the leptin gene promoter is associated with anemia in patients with HIV disease. Blood, 118(20): 5401–5408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva E C, Myers M G Jr (2008). Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond), 32(Suppl 7): S8–S12

    Article  CAS  Google Scholar 

  • von Lindern M, Zauner W, Mellitzer G, Steinlein P, Fritsch G, Huber K, Löwenberg B, Beug H(1999). The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood, 94(2):550–559

    Google Scholar 

  • von Wussow U, Klaus J, Pagel H (2005). Is the renal production of erythropoietin controlled by the brain stem? Am J Physiol Endocrinol Metab, 289(1): E82–E86

    Article  CAS  Google Scholar 

  • Voorhees J L, Powell N D, Moldovan L, Mo X, Eubank T D, Marsh C B (2013). Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation. PLoS One, 8(10): e77935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters M R, Sharma R (2003). Cross-talk between beta-adrenergic stimulation and estrogen receptors: isoproterenol inhibits 17betaestradiol- induced gene transcription in A7r5 cells. J Cardiovasc Pharmacol, 42(2): 266–274

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Zhou J, Huang X, LiM(2008). Effects of psychological stress on serum iron and erythropoiesis. Int J Hematol, 88(1): 52–56

    Article  PubMed  Google Scholar 

  • White L D, Lawson E E (1997). Effects of chronic prenatal hypoxia on tyrosine hydroxylase and phenylethanolamine N-methyltransferase messenger RNA and protein levels in medulla oblongata of postnatal rat. Pediatr Res, 42(4): 455–462

    Article  CAS  PubMed  Google Scholar 

  • Wohleb E S, Hanke M L, Corona A W, Powell N D, Stiner L M, Bailey M T, Nelson R J, Godbout J P, Sheridan J F (2011). b-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci, 31(17): 6277–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woiciechowsky C, Schöning B, Lanksch W R, Volk H D, Döcke W D (1999). Catecholamine-induced interleukin-10 release: a key mechanism in systemic immunodepression after brain injury. Crit Care, 3(6): R107

    Article  PubMed Central  Google Scholar 

  • Yanagihara N, Toyohira Y, Ueno S, Tsutsui M, Utsunomiya K, Liu M, Tanaka K (2005). Stimulation of catecholamine synthesis by environmental estrogenic pollutants. Endocrinology, 146(1): 265–272

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Jian J, Katz S, Abramson S B, Huang X (2012). 17ß-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology, 153(7): 3170–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda Y, Masuda S, Chikuma M, Inoue K, Nagao M, Sasaki R (1998). Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem, 273(39): 25381–25387

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama T, Etoh T, Kitagawa H, Tsukahara S, Kannan Y (2003). Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci, 65(4): 449–452

    Article  PubMed  Google Scholar 

  • Zhao M, Chen J, Wang W, Wang L, Ma L, Shen H, Li M (2008). Psychological stress induces hypoferremia through the IL-6-hepcidin axis in rats. Biochem Biophys Res Commun, 373(1): 90–93

    Article  CAS  PubMed  Google Scholar 

  • Zouhal H, Lemoine-Morel S, Mathieu M E, Casazza G A, Jabbour G (2013). Catecholamines and obesity: effects of exercise and training. Sports Med, 43(7): 591–600

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all our colleagues in the Department of Hematology in Tarbiat Modares University for assistance with the manuscript and Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saba, F., Saki, N., Khodadi, E. et al. Crosstalk between catecholamines and erythropoiesis. Front. Biol. 12, 103–115 (2017). https://doi.org/10.1007/s11515-017-1428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1428-4

Keywords

Navigation