Skip to main content
Log in

Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease

  • Review
  • Published:
Frontiers in Biology

Abstract

The type X collagen gene, COL10A1, is specifically expressed by hypertrophic chondrocytes during endochondral ossification. Endochondral ossification is a well-coordinated process that involves a cartilage intermediate and leads to formation of most of the skeleton in vertebrates during skeletogenesis. Chondrocyte hypertrophy is a critical stage of endochondral ossification linking both bone and cartilage development. Given its specific association with chondrocyte hypertrophy, type X collagen plays essential roles in endochondral ossification. It was previously shown that transgenic mice with mutant type X collagen develop variable skeleton-hematopoietic abnormalities indicating defective endochondral ossification, while mutations and abnormal expression of human COL10A1 cause abnormal chondrocyte hypertrophy that has been seen in many skeletal disorders, including skeletal chondrodysplasia and osteoarthritis. In this review, we summarized the skeletal chondrodysplasia with COL10A1 gene mutation that shows growth plate defect. We also reviewed recent studies that correlate the type X collagen gene expression and chondrocyte hypertrophy with osteoarthritis. Due to its significant clinical relevance, the type X collagen gene regulation has been extensively studied over the past two decades. Here, we focus on recent progress characterizing the cis-enhancer elements and their binding factors that together confer hypertrophic chondrocyte-specific murine type X collagen gene (Col10a1) expression. Based on literature review and our own studies, we surmise that there are multiple factors that contribute to hypertrophic chondrocyte-specific Col10a1 expression. These factors include both transactivators (such as Runx2, MEF2C etc.) and repressors (such as AP1, NFATc1, Sox9 etc.), while other co-factors or epigenetic control of Col10a1 expression may not be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams S L, Pallante K M, Niu Z, Cohen A J, Lu J, LeBoy P S (2003). Stimulation of type-X collagen gene transcription by retinoids occurs in part through the BMP signaling pathway. J Bone Joint Surg Am, 85-A(Suppl 3): 29–33

    PubMed  Google Scholar 

  • Arnold M A, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton J M, Richardson J A, Bassel-Duby R, Olson E N (2007). MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell, 12(3): 377–389

    CAS  PubMed  Google Scholar 

  • Bateman J F, Freddi S, McNeil R, Thompson E, Hermanns P, Savarirayan R, Lamandé S R (2004). Identification of four novel COL10A1 missense mutations in schmid metaphyseal chondrodysplasia: further evidence that collagen X NC1 mutations impair trimer assembly. Hum Mutat, 23(4): 396

    PubMed  Google Scholar 

  • Bateman J F, Freddi S, Nattrass G, Savarirayan R (2003). Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum Mol Genet, 12(3): 217–225

    CAS  PubMed  Google Scholar 

  • Bateman J F, Wilson R, Freddi S, Lamandé S R, Savarirayan R (2005). Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. Hum Mutat, 25(6): 525–534

    CAS  PubMed  Google Scholar 

  • Beier F, Vornehm S, Pöschl E, von der Mark K, Lammi M J (1997). Localization of silencer and enhancer elements in the human type X collagen gene. J Cell Biochem, 66(2): 210–218

    CAS  PubMed  Google Scholar 

  • Chambers D, Young D A, Howard C, Thomas J T, Boam D S, Grant M E, Wallis G A, Boot-Handford R P (2002). An enhancer complex confers both high-level and cell-specific expression of the human type X collagen gene. FEBS Lett, 531(3): 505–508

    CAS  PubMed  Google Scholar 

  • Chan D, Cole W G, Rogers J G, Bateman J F (1995). Type X collagen multimer assembly in vitro is prevented by a Gly618 to Val mutation in the alpha 1(X) NC1 domain resulting in Schmid metaphyseal chondrodysplasia. J Biol Chem, 270(9): 4558–4562

    CAS  PubMed  Google Scholar 

  • Chang H J, Yang M J, Yang Y H, Hou M F, Hsueh E J, Lin S R (2009). MMP13 is potentially a new tumor marker for breast cancer diagnosis. Oncol Rep, 22(5): 1119–1127

    CAS  PubMed  Google Scholar 

  • Chapman K B, Prendes M J, Sternberg H, Kidd J L, Funk W D, Wagner J, West MD (2012). COL10A1 expression is elevated in diverse solid tumor types and is associated with tumor vasculature. Future Oncol, 8(8): 1031–1040

    CAS  PubMed  Google Scholar 

  • D’Alonzo R C, Selvamurugan N, Karsenty G, Partridge N C (2002). Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem, 277(1): 816–822

    PubMed  Google Scholar 

  • Desmedt C, Majjaj S, Kheddoumi N, Singhal S K, Haibe-Kains B, El Ouriaghli F, Chaboteaux C, Michiels S, Lallemand F, Journe F, Duvillier H, Loi S, Quackenbush J, Dekoninck S, Blanpain C, Lagneaux L, Houhou N, Delorenzi M, Larsimont D, Piccart M, Sotiriou C (2012). Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. Clin Cancer Res, 18(4): 1004–1014

    CAS  PubMed  Google Scholar 

  • Dong Y, Drissi H, Chen M, Chen D, Zuscik MJ, Schwarz EM, O’Keefe R J (2005). Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem, 95(5): 1057–1068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong Y F, Soung Y, Schwarz E M, O’Keefe R J, Drissi H (2006). Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol, 208(1): 77–86

    CAS  PubMed  Google Scholar 

  • Dourado G, LuValle P (1998). Proximal DNA elements mediate repressor activity conferred by the distal portion of the chicken collagen X promoter. J Cell Biochem, 70(4): 507–516

    CAS  PubMed  Google Scholar 

  • Drissi M H, Li X, Sheu T J, Zuscik M J, Schwarz E M, Puzas J E, Rosier R N, O’Keefe R J (2003). Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J Cell Biochem, 90(6): 1287–1298

    CAS  PubMed  Google Scholar 

  • Drissi H, Zuscik M, Rosier R, O’Keefe R (2005). Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med, 26(3): 169–179

    CAS  PubMed  Google Scholar 

  • Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock R T, Lefebvre V (2012). Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell, 22(3): 597–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eerola I, Salminen H, Lammi P, Lammi M, von der Mark K, Vuorio E, Säämänen A M (1998). Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis Rheum, 41(7): 1287–1295

    CAS  PubMed  Google Scholar 

  • Eferl R, Hoebertz A, Schilling A F, Rath M, Karreth F, Kenner L, Amling M, Wagner E F (2004). The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J, 23(14): 2789–2799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eferl R, Wagner E F (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer, 3(11): 859–868

    CAS  PubMed  Google Scholar 

  • Fang J, Hall B K (1997). Chondrogenic cell differentiation from membrane bone periostea. Anat Embryol (Berl), 196(5): 349–362 (Review)

    CAS  Google Scholar 

  • Gebhard S, Pöschl E, Riemer S, Bauer E, Hattori T, Eberspaecher H, Zhang Z, Lefebvre V, de Crombrugghe B, von der Mark K (2004). A highly conserved enhancer in mammalian type X collagen genes drives high levels of tissue-specific expression in hypertrophic cartilage in vitro and in vivo. Matrix Biol, 23(5): 309–322

    CAS  PubMed  Google Scholar 

  • Goldring M B, Tsuchimochi K, Ijiri K (2006). The control of chondrogenesis. J Cell Biochem, 97(1): 33–44

    CAS  PubMed  Google Scholar 

  • Gomez S, Lopez-Cepero J M, Silvestrini G, Bonucci E (1996). Matrix vesicles and focal proteoglycan aggregates are the nucleation sites revealed by the lanthanum incubation method: a correlated study on the hypertrophic zone of the rat epiphyseal cartilage. Calcif Tissue Int, 58(4): 273–282

    CAS  PubMed  Google Scholar 

  • Gregory C A, Zabel B, Grant M E, Boot-Handford R P, Wallis G A (2000). Equal expression of typ X collagen mRNA fom mutant and wild type COL10A1 alleles in growth plate cartilage from a patient with metaphyseal chondrodysplasia type Schmid. J Med Genet, 37(8): 627–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grskovic I, Kutsch A, Frie C, Groma G, Stermann J, Schlötzer-Schrehardt U, Niehoff A, Moss S E, Rosenbaum S, Pöschl E, Chmielewski M, Rappl G, Abken H, Bateman J F, Cheah K S, Paulsson M, Brachvogel B (2012). Depletion of annexin A5, annexin A6, and collagen X causes no gross changes in matrix vesiclemediated mineralization, but lack of collagen X affects hematopoiesis and the Th1/Th2 response. J Bone Miner Res, 27(11): 2399–2412

    CAS  PubMed  Google Scholar 

  • Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B, Bösl M R, Hess A, Surmann-Schmitt C, von der Mark H, de Crombrugghe B, von der Mark K (2010). SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development, 137(6): 901–911

    CAS  PubMed  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci, 117(Pt 25): 5965–5973

    CAS  PubMed  Google Scholar 

  • Hess J, Hartenstein B, Teurich S, Schmidt D, Schorpp-Kistner M, Angel P (2003). Defective endochondral ossification in mice with strongly compromised expression of JunB. J Cell Sci, 116(Pt 22): 4587–4596

    CAS  PubMed  Google Scholar 

  • Hess J, Porte D, Munz C, Angel P (2001). AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem, 276(23): 20029–20038

    CAS  PubMed  Google Scholar 

  • Higashikawa A, Saito T, Ikeda T, Kamekura S, Kawamura N, Kan A, Oshima Y, Ohba S, Ogata N, Takeshita K, Nakamura K, Chung U I, Kawaguchi H (2009). Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis Rheum, 60(1): 166–178

    CAS  PubMed  Google Scholar 

  • Hinoi E, Bialek P, Chen Y T, Rached M T, Groner Y, Behringer R R, Ornitz D M, Karsenty G (2006). Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev, 20(21): 2937–2942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho M S, Tsang K Y, Lo R L, Susic M, Mäkitie O, Chan T W, Ng V C, Sillence D O, Boot-Handford R P, Gibson G, Cheung K M, Cole W G, Cheah K S, Chan D (2007). COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. Hum Mol Genet, 16(10): 1201–1215

    CAS  PubMed  Google Scholar 

  • Hovhannisyan H, Zhang Y, Hassan M Q, Wu H, Glackin C, Lian J B, Stein J L, Montecino M, Stein G S, van Wijnen A J (2013). Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene. J Cell Physiol, 228(2): 313–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ijiri K, Zerbini L F, Peng H, Correa R G, Lu B, Walsh N, Zhao Y, Taniguchi N, Huang X L, Otu H, Wang H, Wang J F, Komiya S, Ducy P, Rahman M U, Flavell R A, Gravallese E M, Oettgen P, Libermann T A, Goldring MB (2005). A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem, 280(46): 38544–38555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikegawa S, Nakamura K, Nagano A, Haga N, Nakamura Y (1997). Mutations in the N-terminal globular domain of the type X collagen gene (COL10A1) in patients with Schmid metaphyseal chondrodysplasia. Hum Mutat, 9(2): 131–135

    CAS  PubMed  Google Scholar 

  • Ikegawa S, Nishimura G, Nagai T, Hasegawa T, Ohashi H, Nakamura Y (1998). Mutation of the type X collagen gene (COL10A1) causes spondylometaphyseal dysplasia. Am J Hum Genet, 63(6): 1659–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imabuchi R, Ohmiya Y, Kwon H J, Onodera S, Kitamura N, Kurokawa T, Gong J P, Yasuda K (2011). Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage. BMC Musculoskelet Disord, 12(1): 213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn, 214(4): 279–290

    CAS  PubMed  Google Scholar 

  • Jacenko O, LuValle P A, Olsen B R (1993). Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature, 365(6441): 56–61

    CAS  PubMed  Google Scholar 

  • Jochum W, David J P, Elliott C, Wutz A, Plenk H Jr, Matsuo K, Wagner E F (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med, 6(9): 980–984

    CAS  PubMed  Google Scholar 

  • Jochum W, Passegué E, Wagner E F (2001). AP-1 in mouse development and tumorigenesis. Oncogene, 20(19): 2401–2412

    CAS  PubMed  Google Scholar 

  • Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, Nakamura K, Chung U I, Kawaguchi H (2006). Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum, 54(8): 2462–2470

    CAS  PubMed  Google Scholar 

  • Karreth F, Hoebertz A, Scheuch H, Eferl R, Wagner E F (2004). The AP1 transcription factor Fra2 is required for efficient cartilage development. Development, 131(22): 5717–5725

    CAS  PubMed  Google Scholar 

  • Kawaguchi H (2008). Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells, 25(1): 1–6

    CAS  PubMed  Google Scholar 

  • Kenner L, Hoebertz A, Beil F T, Keon N, Karreth F, Eferl R, Scheuch H, Szremska A, Amling M, Schorpp-Kistner M, Angel P, Wagner E F (2004). Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol, 164(4): 613–623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim I S, Otto F, Zabel B, Mundlos S (1999). Regulation of chondrocyte differentiation by Cbfa1. Mech Dev, 80(2): 159–170

    CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson R T, Gao Y H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5): 755–764

    CAS  PubMed  Google Scholar 

  • Kronenberg H M (2003). Developmental regulation of the growth plate. Nature, 423(6937): 332–336

    CAS  PubMed  Google Scholar 

  • Kung L H, Rajpar M H, Briggs M D, Boot-Handford R P (2012). Hypertrophic chondrocytes have a limited capacity to cope with increases in endoplasmic reticulum stresswithout triggering the unfolded protein response. J Histochem Cytochem, 60(10): 734–48

    PubMed Central  PubMed  Google Scholar 

  • Kwan KM, Pang MK, Zhou S, Cowan S K, Kong R Y, Pfordte T, Olsen B R, Sillence D O, Tam P P, Cheah K S (1997). Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol, 136(2): 459–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G (1997). Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet, 16(3): 307–310

    CAS  PubMed  Google Scholar 

  • Leung V Y, Gao B, Leung K K, Melhado I G, Wynn S L, Au T Y, Dung N W, Lau J Y, Mak A C, Chan D, Cheah K S (2011). SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet, 7(11): e1002356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li F, Lu Y, Ding M, Napierala D, Abbassi S, Chen Y, Duan X, Wang S, Lee B, Zheng Q (2011). Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. J Bone Miner Res, 26(12): 2899–2910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linsenmayer T F, Chen Q A, Gibney E, Gordon M K, Marchant J K, Mayne R, Schmid T M (1991). Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development, 111(1): 191–196

    CAS  PubMed  Google Scholar 

  • Linsenmayer T F, Fitch J M, Gross J, Mayne R (1985). Are collagen fibrils in the developing avian cornea composed of two different collagen types? Evidence from monoclonal antibody studies. Ann N Y Acad Sci, 460(1 Biology, Chem): 232–245

    CAS  PubMed  Google Scholar 

  • Long F, Linsenmayer T F (1995). Tissue-specific regulation of the type X collagen gene. Analyses by in vivo footprinting and transfection with a proximal promoter region. J Biol Chem, 270(52): 31310–31314

    CAS  Google Scholar 

  • Mackie E J, Ahmed Y A, Tatarczuch L, Chen K S, Mirams M (2008). Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 40(1): 46–62

    CAS  PubMed  Google Scholar 

  • MacLean H E, Kim J I, Glimcher M J, Wang J, Kronenberg H M, Glimcher L H (2003). Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol, 262(1): 51–63

    CAS  PubMed  Google Scholar 

  • Magee C, Nurminskaya M, Faverman L, Galera P, Linsenmayer T F (2005). SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem, 280(27): 25331–25338

    CAS  PubMed  Google Scholar 

  • Mäkitie O, Susic M, Cole W G (2010). Early-onset metaphyseal chondrodysplasia type Schmid associated with a COL10A1 frameshift mutation and impaired trimerization of wild-type α1(X) protein chains. J Orthop Res, 28(11): 1497–1501

    PubMed  Google Scholar 

  • Mäkitie O, Susic M, Ward L, Barclay C, Glorieux F H, Cole WG (2005). Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations—findings in 10 patients. Am J Med Genet A, 137A(3): 241–248

    PubMed  Google Scholar 

  • Marks D S, Gregory C A, Wallis G A, Brass A, Kadler K E, Boot-Handford R P (1999). Metaphyseal chondrodysplasia type Schmid mutations are predicted to occur in two distinct three-dimensional clusters within type X collagen NC1 domains that retain the ability to trimerize. J Biol Chem, 274(6): 3632–3641

    CAS  PubMed  Google Scholar 

  • Maruyama T, Miyamoto Y, Yamamoto G, Yamada A, Yoshimura K, Suzawa T, Takami M, Akiyama T, Hoshino M, Iwasa F, Ikumi N, Tachikawa T, Mishima K, Baba K, Kamijo R (2013). Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS ONE, 8(2): e56984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui Y, Yasui N, Kawabata H, Ozono K, Nakata K, Mizushima T, Tsumaki N, Kataoka E, Fujita Y, Ochi T (2000). A novel type X collagen gene mutation (G595R) associated with Schmid-type metaphyseal chondrodysplasia. J Hum Genet, 45(2): 105–108

    CAS  PubMed  Google Scholar 

  • McIntosh I, Abbott M H, Francomano C A (1995). Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the Cterminal noncollagenous domain of type X collagen. Hum Mutat, 5(2): 121–125

    CAS  PubMed  Google Scholar 

  • Myšičková A, Vingron M (2012). Detection of interacting transcription factors in human tissues using predicted DNA binding affinity. BMC Genomics, 13(13 Suppl 1): S2

    PubMed Central  PubMed  Google Scholar 

  • Naef F, Huelsken J (2005). Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. Nucleic Acids Res, 33(13): e111

    PubMed Central  PubMed  Google Scholar 

  • Otto F, Thornell A P, Crompton T, Denzel A, Gilmour K C, Rosewell I R, Stamp G W, Beddington R S, Mundlos S, Olsen B R, Selby P B, Owen M J (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5): 765–771

    CAS  PubMed  Google Scholar 

  • Papachristou D, Pirttiniemi P, Kantomaa T, Agnantis N, Basdra E K (2006). Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes. Eur J Orthod, 28(1): 20–26

    PubMed  Google Scholar 

  • Penolazzi L, Lisignoli G, Lambertini E, Torreggiani E, Manferdini C, Lolli A, Vecchiatini R, Ciardo F, Gabusi E, Facchini A, Gambari R, Piva R (2011). Transcription factor decoy against NFATc1 in human primary osteoblasts. Int J Mol Med, 28(2): 199–206

    CAS  PubMed  Google Scholar 

  • Pullig O, Weseloh G, Ronneberger D, Käkönen S, Swoboda B (2000). Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int, 67(3): 230–240

    CAS  PubMed  Google Scholar 

  • Rajpar M H, McDermott B, Kung L, Eardley R, Knowles L, Heeran M, Thornton D J, Wilson R, Bateman J F, Poulsom R, Arvan P, Kadler K E, Briggs M D, Boot-Handford R P (2009). Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet, 5(10): e1000691

    PubMed Central  PubMed  Google Scholar 

  • Riemer S, Gebhard S, Beier F, Pöschl E, von der Mark K (2002). Role of c-fos in the regulation of type X collagen gene expression by PTH and PTHrP: Localization of a PTH/PTHrPresponsive region in the human COL10A1 enhancer. J Cell Biochem, 86: 688–699

    CAS  PubMed  Google Scholar 

  • Sahar D E, Longaker M T, Quarto N (2005). Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Dev Biol, 280(2): 344–361

    CAS  PubMed  Google Scholar 

  • Saito T, Fukai A, Mabuchi A, Ikeda T, Yano F, Ohba S, Nishida N, Akune T, Yoshimura N, Nakagawa T, Nakamura K, Tokunaga K, Chung U I, Kawaguchi H (2010). Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med, 16(6): 678–686

    CAS  PubMed  Google Scholar 

  • Sakimura R, Tanaka K, Yamamoto S, Matsunobu T, Li X, Hanada M, Okada T, Nakamura T, Li Y, Iwamoto Y (2007). The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res, 13(1): 275–282

    CAS  PubMed  Google Scholar 

  • Sawai H, Ida A, Nakata Y, Koyama K (1998). Novel missense mutation resulting in the substitution of tyrosine by cysteine at codon 597 of the type X collagen gene associated with Schmid metaphyseal chondrodysplasia. J Hum Genet, 43(4): 259–261

    CAS  PubMed  Google Scholar 

  • Schipani E, Provot S (2003). PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res C Embryo Today, 69(4): 352–362

    CAS  PubMed  Google Scholar 

  • Shen G (2005). The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res, 8(1): 11–17

    CAS  PubMed  Google Scholar 

  • Simões B, Conceição N, Viegas C S, Pinto J P, Gavaia P J, Hurst L D, Kelsh R N, Cancela M L (2006). Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2alphaA2. Calcif Tissue Int, 79(4): 230–244

    PubMed  Google Scholar 

  • Stratakis C A, Orban Z, Burns A L, Vottero A, Mitsiades C S, Marx S J, Abbassi V, Chrousos G P (1996). Dideoxyfingerprinting (ddF) analysis of the type X collagen gene (COL10A1) and identification of a novel mutation (S671P) in a kindred with Schmid metaphyseal chondrodysplasia. Biochem Mol Med, 59(2): 112–117

    CAS  PubMed  Google Scholar 

  • Takeda S, Bonnamy J P, Owen M J, Ducy P, Karsenty G (2001). Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev, 15(4): 467–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan J T, Kremer F, Freddi S, Bell K M, Baker N L, Lamandé S R, Bateman J F (2008). Competency for nonsense-mediated reduction in collagen X mRNA is specified by the 3′ UTR and corresponds to the position of mutations in Schmid metaphyseal chondrodysplasia. Am J Hum Genet, 82(3): 786–793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas D P, Sunters A, Gentry A, Grigoriadis A E (2000). Inhibition of chondrocyte differentiation in vitro by constitutive and inducible overexpression of the c-fos proto-oncogene. J Cell Sci, 113(Pt 3): 439–450

    CAS  PubMed  Google Scholar 

  • Thomas-Chollier M, Hufton A, Heinig M, O’Keeffe S, Masri N E, Roider H G, Manke T, Vingron M (2011). Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat Protoc, 6(12): 1860–1869

    CAS  PubMed  Google Scholar 

  • Tsuchimochi K, Otero M, Dragomir C L, Plumb D A, Zerbini L F, Libermann T A, Marcu K B, Komiya S, Ijiri K, Goldring MB (2010). GADD45beta enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPbeta-TAD4 in terminally differentiating chondrocytes. J Biol Chem, 285(11): 8395–8407

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Kraan PM, van den Berg WB (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?. Osteoarthritis Cartilage, 20(3): 223–232

    PubMed  Google Scholar 

  • von der Mark K, Frischholz S, Aigner T, Beier F, Belke J, Erdmann S, Burkhardt H (1995). Upregulation of type X collagen expression in osteoarthritic cartilage. Acta Orthop Scand Suppl, 266: 125–129

    PubMed  Google Scholar 

  • von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Glückert K, Stöss H (1992). Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum, 35(7): 806–811

    Google Scholar 

  • Vonk L A, Kragten A H, Dhert W J, Saris D B, Creemers L B (2014). Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis Cartilage, 22(1): 145–153

    CAS  PubMed  Google Scholar 

  • Wagner E F (2002). Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis, 61(61 Suppl 2): ii40–ii42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallis G A, Rash B, Sykes B, Bonaventure J, Maroteaux P, Zabel B, Wynne-Davies R, Grant M E, Boot-Handford R P (1996). Mutations within the gene encoding the alpha 1 (X) chain of type X collagen (COL10A1) cause metaphyseal chondrodysplasia type Schmid but not several other forms of metaphyseal chondrodysplasia. J Med Genet, 33(6): 450–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warman M L, Abbott M, Apte S S, Hefferon T, McIntosh I, Cohn D H, Hecht J T, Olsen B R, Francomano C A (1993). A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet, 5(1): 79–82

    CAS  PubMed  Google Scholar 

  • Wilson R, Freddi S, Chan D, Cheah K S, Bateman J F (2005). Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J Biol Chem, 280(16): 15544–15552

    CAS  PubMed  Google Scholar 

  • Woelfle J V, Brenner R E, Zabel B, Reichel H, Nelitz M(2011). Schmidtype metaphyseal chondrodysplasia as the result of a collagen type X defect due to a novel COL10A1 nonsense mutation: A case report of a novel COL10A1 mutation. J Orthop Sci, 16(2): 245–249

    PubMed  Google Scholar 

  • Zanotti S, Canalis E (2013). Notch suppresses nuclear factor of activated T cells (NFAT) transactivation and Nfatc1 expression in chondrocytes. Endocrinology, 154(2): 762–772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Q, Keller B, Zhou G, Napierala D, Chen Y, Zabel B, Parker A E, Lee B (2009). Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J Bone Miner Res, 24(6): 1022–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Q, Sebald E, Zhou G, Chen Y, Wilcox W, Lee B, Krakow D (2005). Dysregulation of chondrogenesis in human cleidocranial dysplasia. Am J Hum Genet, 77(2): 305–312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Q, Zhou G, Morello R, Chen Y, Garcia-Rojas X, Lee B (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol, 162(5): 833–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, Krakow D, Lee B (2006). Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA, 103(50): 19004–19009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Li L, Zhou L, Mei H, Jin K, Liu K, Xu W, Tang J, Yang Y, Zhao R, He X (2011). A novel mutation leading to elongation of the deduced α1(X) chain results in Metaphyseal Chondrodysplasia type Schmid. Clin Chim Acta, 412(13–14): 1266–1269

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Boeuf S, Dickhut A, Boehmer S, Olek S, Richter W (2008). Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum, 58(9): 2743–2753

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiping Zheng.

Additional information

Yaojuan LU and Longwei QIAO contribute equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Qiao, L., Lei, G. et al. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. Front. Biol. 9, 195–204 (2014). https://doi.org/10.1007/s11515-014-1310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1310-6

Keywords

Navigation