Skip to main content

Advertisement

Log in

Mechanisms of synovial joint and articular cartilage development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenic protein

CDMP1:

Cartilage-derived morphogenetic protein 1

cKO:

Conditional knockout

FGF:

Fibroblast growth factor

FGFR3:

Fibroblast growth factor receptor 3

GAG:

Glycosaminoglycan

GDF5:

Growth differentiation factor 5

IHH:

Indian hedgehog

MAPK:

Mitogen-activated protein kinase

NICD:

Notch intracellular domain

PTHrP:

Parathyroid hormone-related protein

Prg4:

Progeoglycan 4

SFZ:

Superficial zone

TGF-β:

Transforming growth factor-β

Tgfbr2:

TGF-β type II receptor

UDPGD:

Uridine diphosphoglucose dehydrogenase

References

  1. Oldershaw RA, Baxter MA, Lowe ET et al (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28:1187–1194. https://doi.org/10.1038/nbt.1683

    Article  CAS  PubMed  Google Scholar 

  2. Chijimatsu R, Ikeya M, Yasui Y et al (2017) Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells Int. https://doi.org/10.1155/2017/1960965

    Article  PubMed  PubMed Central  Google Scholar 

  3. Saito T, Yano F, Mori D et al (2015) Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells. Biomed Res 36:179–186. https://doi.org/10.2220/biomedres.36.179

    Article  PubMed  Google Scholar 

  4. Yamashita A, Morioka M, Yahara Y et al (2015) Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2015.01.016

    Article  PubMed  Google Scholar 

  5. Inui A, Iwakura T, Reddi A (2012) Human stem cells and articular cartilage regeneration. Cells 1:994–1009. https://doi.org/10.3390/cells1040994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen S, Fu P, Cong R et al (2015) Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis 2:76–95. https://doi.org/10.1016/j.gendis.2014.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cleary MA, van Osch GJ, Brama PA et al (2015) FGF, TGFbeta and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med 9:332–342. https://doi.org/10.1002/term.1744

    Article  CAS  PubMed  Google Scholar 

  8. Salva JE, Merrill AE (2017) Signaling networks in joint development. Dev Dyn 246:262–274. https://doi.org/10.1002/dvdy.24472

    Article  PubMed  Google Scholar 

  9. Decker RS (2017) Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol 62:50–56. https://doi.org/10.1016/j.semcdb.2016.10.005

    Article  PubMed  Google Scholar 

  10. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468

    Article  PubMed  PubMed Central  Google Scholar 

  11. Archer CW, Morrison H, Pitsillides AA (1994) Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat 184(Pt 3):447–456

    PubMed  PubMed Central  Google Scholar 

  12. Decker RS, Um HB, Dyment NA et al (2017) Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev Biol 426:56–68. https://doi.org/10.1016/j.ydbio.2017.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carballo CB, Nakagawa Y, Sekiya I et al (2017) Basic science of articular cartilage. Clin Sports Med 36:413–425. https://doi.org/10.1016/j.csm.2017.02.001

    Article  PubMed  Google Scholar 

  14. Carter DR, Beaupre GS, Wong M et al (2004) The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 427:S69–S77

    Article  Google Scholar 

  15. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ et al (2016) Articular cartilage: from formation to tissue engineering. Biomater Sci 4:734–767. https://doi.org/10.1039/c6bm00068a

    Article  CAS  PubMed  Google Scholar 

  16. Hughes LC, Archer CW, Ap Gwynn I (2005) The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur Cell Mater 9:68–84

    Article  CAS  PubMed  Google Scholar 

  17. Kozhemyakina E, Lassar AB, Zelzer E (2015) A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142:817–831. https://doi.org/10.1242/dev.105536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Long F, Ornitz DM (2013) Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008334

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lefebvre V, Bhattaram P (2010) Vertebrate skeletogenesis. Curr Top Dev Biol 90:291–317. https://doi.org/10.1016/s0070-2153(10)90008-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lhuaire M, Martinez A, Kaplan H et al (2014) Human developmental anatomy: microscopic magnetic resonance imaging (muMRI) of four human embryos (from carnegie stage 10 to 20). Ann Anat 196:402–409. https://doi.org/10.1016/j.aanat.2014.07.004

    Article  PubMed  Google Scholar 

  21. Lhuaire M, Tonnelet R, Renard Y et al (2015) Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from carnegie stage 14 to 23). Ann Anat 200:105–113. https://doi.org/10.1016/j.aanat.2015.02.012

    Article  PubMed  Google Scholar 

  22. O’Rahilly R, Muller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192:73–84. https://doi.org/10.1159/000289817

    Article  PubMed  Google Scholar 

  23. Chen M, Zhu M, Awad H et al (2008) Inhibition of β-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 121:1455–1465. https://doi.org/10.1242/jcs.020362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dy P, Smits P, Silvester A et al (2010) Synovial joint morphogenesis requires the chondrogenic action of Sox5 and Sox6 in growth plate and articular cartilage. Dev Biol 341:346–359. https://doi.org/10.1016/j.ydbio.2010.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kavanagh E, Abiri M, Bland YS et al (2002) Division and death of cells in developing synovial joints and long bones. Cell Biol Int 26:679–688

    Article  PubMed  Google Scholar 

  26. Mitrovic DR (1977) Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies. Am J Anat 150:333–347. https://doi.org/10.1002/aja.1001500207

    Article  CAS  PubMed  Google Scholar 

  27. Ito MM, Kida MY (2000) Morphological and biochemical re-evaluation of the process of cavitation in the rat knee joint: cellular and cell strata alterations in the interzone. J Anat 197(Pt 4):659–679

    Article  PubMed  PubMed Central  Google Scholar 

  28. Holder N (1977) An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol 39:115–127

    CAS  PubMed  Google Scholar 

  29. Hyde G, Dover S, Aszodi A et al (2007) Lineage tracing using matrillin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol 304:825–833. https://doi.org/10.1016/j.ydbio.2007.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hyde G, Boot-Handford RP, Wallis GA (2008) Col2a1 lineage tracing reveals that the meniscus of the knee joint has a complex cellular origin. J Anat 213:531–538. https://doi.org/10.1111/j.1469-7580.2008.00966.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winslow BB, Burke AC (2010) Atypical molecular profile for joint development in the avian costal joint. Dev Dyn 239:2547–2557. https://doi.org/10.1002/dvdy.22388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murphy JM, Heinegård D, McIntosh A et al (1999) Distribution of cartilage molecules in the developing mouse joint. Matrix Biol 18:487–497. https://doi.org/10.1016/s0945-053x(99)00042-6

    Article  CAS  PubMed  Google Scholar 

  33. Shwartz Y, Viukov S, Krief S et al (2016) Joint development involves a continuous influx of Gdf5-positive cells. Cell Rep 15:2577–2587. https://doi.org/10.1016/j.celrep.2016.05.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh PN, Ray A, Azad K et al (2016) A comprehensive mRNA expression analysis of developing chicken articular cartilage. Gene Expr Patterns 20:22–31. https://doi.org/10.1016/j.gep.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  35. Merino R, Macias D, Ganan Y et al (1999) Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206:33–45. https://doi.org/10.1006/dbio.1998.9129

    Article  CAS  PubMed  Google Scholar 

  36. Seo H-S, Serra R (2007) Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol 310:304–316. https://doi.org/10.1016/j.ydbio.2007.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spagnoli A, O’Rear L, Chandler RL et al (2007) TGF-beta signaling is essential for joint morphogenesis. J Cell Biol 177:1105–1117. https://doi.org/10.1083/jcb.200611031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seemann P, Schwappacher R, Kjaer KW et al (2005) Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Investig 115:2373–2381. https://doi.org/10.1172/jci25118

    Article  CAS  PubMed  Google Scholar 

  39. Dowthwaite GP, Edwards JCW, Pitsillides AA (1998) An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem 46:641–651. https://doi.org/10.1177/002215549804600509

    Article  CAS  PubMed  Google Scholar 

  40. Pitsillides AA, Archer CW, Prehm P et al (1995) Alterations in hyaluronan synthesis during developing joint cavitation. J Histochem Cytochem 43:263–273

    Article  CAS  PubMed  Google Scholar 

  41. Matsumoto K, Li Y, Jakuba C et al (2009) Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development 136:2825–2835. https://doi.org/10.1242/dev.038505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bastow ER, Lamb KJ, Lewthwaite JC et al (2005) Selective activation of the MEK-ERK pathway is regulated by mechanical stimuli in forming joints and promotes pericellular matrix formation. J Biol Chem 280:11749–11758. https://doi.org/10.1074/jbc.m414495200

    Article  CAS  PubMed  Google Scholar 

  43. Lewthwaite JC, Bastow ER, Lamb KJ et al (2006) A specific mechanomodulatory role for p38 MAPK in embryonic joint articular surface cell MEK-ERK pathway regulation. J Biol Chem 281:11011–11018. https://doi.org/10.1074/jbc.m510680200

    Article  CAS  PubMed  Google Scholar 

  44. Osborne AC, Lamb KJ, Lewthwaite JC et al (2002) Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact 2:448–456

    CAS  PubMed  Google Scholar 

  45. Drachman DB, Sokoloff L (1966) The role of movement in embryonic joint development. Dev Biol 14:401–420. https://doi.org/10.1016/0012-1606(66)90022-4

    Article  Google Scholar 

  46. Mitrovic D (1982) Development of the articular cavity in paralyzed chick embryos and in chick embryo limb buds cultured on chorioallantoic membranes. Acta Anat (Basel) 113:313–324

    Article  CAS  Google Scholar 

  47. Kavanagh E, Church VL, Osborne AC et al (2006) Differential regulation of GDF-5 and FGF-2/4 by immobilisation in ovo exposes distinct roles in joint formation. Dev Dyn 235:826–834. https://doi.org/10.1002/dvdy.20679

    Article  CAS  PubMed  Google Scholar 

  48. Roddy KA, Prendergast PJ, Murphy P (2011) Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS One 6:e17526. https://doi.org/10.1371/journal.pone.0017526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kahn J, Shwartz Y, Blitz E et al (2009) Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 16:734–743. https://doi.org/10.1016/j.devcel.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  50. Rolfe RA, Nowlan NC, Kenny EM et al (2014) Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways. BMC Genom 15:48. https://doi.org/10.1186/1471-2164-15-48

    Article  Google Scholar 

  51. Storm EE, Huynh TV, Copeland NG et al (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 368:639–643. https://doi.org/10.1038/368639a0

    Article  CAS  PubMed  Google Scholar 

  52. Polinkovsky A, Robin NH, Thomas JT et al (1997) Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat Genet 17:18–19. https://doi.org/10.1038/ng0997-18

    Article  CAS  PubMed  Google Scholar 

  53. Thomas JT, Kilpatrick MW, Lin K et al (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17:58–64. https://doi.org/10.1038/ng0997-58

    Article  CAS  PubMed  Google Scholar 

  54. Thomas JT, Lin K, Nandedkar M et al (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12:315–317. https://doi.org/10.1038/ng0396-315

    Article  CAS  PubMed  Google Scholar 

  55. Faiyaz-Ul-Haque M, Ahmad W, Zaidi SH et al (2002) Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome). Clin Genet 61:454–458

    Article  CAS  PubMed  Google Scholar 

  56. Yi SE, Daluiski A, Pederson R et al (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127:621–630

    CAS  PubMed  Google Scholar 

  57. Baur ST, Mai JJ, Dymecki SM (2000) Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127:605–619

    CAS  PubMed  Google Scholar 

  58. Francis-West PH, Abdelfattah A, Chen P et al (1999) Mechanisms of GDF-5 action during skeletal development. Development 126:1305–1315

    CAS  PubMed  Google Scholar 

  59. Storm EE, Kingsley DM (1999) GDF5 coordinates bone and joint formation during digit development. Dev Biol 209:11–27. https://doi.org/10.1006/dbio.1999.9241

    Article  CAS  PubMed  Google Scholar 

  60. Hartmann C, Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104:341–351

    Article  CAS  PubMed  Google Scholar 

  61. Harada M, Takahara M, Zhe P et al (2007) Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthr Cartil 15:468–474. https://doi.org/10.1016/j.joca.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  62. Wolfman NM, Hattersley G, Cox K et al (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Investig 100:321–330. https://doi.org/10.1172/jci119537

    Article  CAS  PubMed  Google Scholar 

  63. Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122:3969–3979

    CAS  PubMed  Google Scholar 

  64. Settle SH Jr, Rountree RB, Sinha A et al (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254:116–130

    Article  CAS  PubMed  Google Scholar 

  65. Rountree RB, Schoor M, Chen H et al (2004) BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol 2:e355. https://doi.org/10.1371/journal.pbio.0020355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roelofs AJ, Zupan J, Riemen AHK et al (2017) Joint morphogenetic cells in the adult mammalian synovium. Nat Commun. https://doi.org/10.1038/ncomms15040

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tsumaki N, Nakase T, Miyaji T et al (2002) Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J Bone Miner Res 17:898–906. https://doi.org/10.1359/jbmr.2002.17.5.898

    Article  CAS  PubMed  Google Scholar 

  68. Ray A, Singh PN, Sohaskey ML et al (2015) Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142:1169–1179. https://doi.org/10.1242/dev.110940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li T, Longobardi L, Myers TJ et al (2013) Joint TGF-beta type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev 22:1342–1359. https://doi.org/10.1089/scd.2012.0207

    Article  CAS  PubMed  Google Scholar 

  70. Koyama E, Shibukawa Y, Nagayama M et al (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73. https://doi.org/10.1016/j.ydbio.2008.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coleman CM, Vaughan EE, Browe DC et al (2013) Growth differentiation factor-5 enhances in vitro mesenchymal stromal cell chondrogenesis and hypertrophy. Stem Cells Dev 22:1968–1976. https://doi.org/10.1089/scd.2012.0282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu FL, Lin LH, Sytwu HK et al (2010) GDF-5 is suppressed by IL-1beta and enhances TGF-beta3-mediated chondrogenic differentiation in human rheumatoid fibroblast-like synoviocytes. Exp Mol Pathol 88:163–170. https://doi.org/10.1016/j.yexmp.2009.09.019

    Article  CAS  PubMed  Google Scholar 

  73. Southam L, Rodriguez-Lopez J, Wilkins JM et al (2007) An SNP in the 5′-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. Hum Mol Genet 16:2226–2232. https://doi.org/10.1093/hmg/ddm174

    Article  CAS  PubMed  Google Scholar 

  74. Miyamoto Y, Mabuchi A, Shi D et al (2007) A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 39:529–533. https://doi.org/10.1038/2005

    Article  CAS  PubMed  Google Scholar 

  75. Wu DD, Li GM, Jin W et al (2012) Positive selection on the osteoarthritis-risk and decreased-height associated variants at the GDF5 gene in East Asians. PLoS One 7:e42553. https://doi.org/10.1371/journal.pone.0042553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guo X, Day TF, Jiang X et al (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18:2404–2417. https://doi.org/10.1101/gad.1230704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spater D, Hill TP, Gruber M et al (2006) Role of canonical Wnt-signalling in joint formation. Eur Cell Mater 12:71–80

    Article  CAS  PubMed  Google Scholar 

  78. Spater D, Hill TP, O’Sullivan RJ et al (2006) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133:3039–3049. https://doi.org/10.1242/dev.02471

    Article  CAS  PubMed  Google Scholar 

  79. Lee H-H, Behringer RR (2007) Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice. PLoS One 2:e450. https://doi.org/10.1371/journal.pone.0000450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mak KK, Chen MH, Day TF et al (2006) Wnt/beta-catenin signaling interacts differentially with Ihh signaling in controlling endochondral bone and synovial joint formation. Development 133:3695–3707. https://doi.org/10.1242/dev.02546

    Article  CAS  PubMed  Google Scholar 

  81. Yasuhara R, Ohta Y, Yuasa T et al (2011) Roles of β-catenin signaling in phenotypic expression and proliferation of articular cartilage superficial zone cells. Lab Investig 91:1739. https://doi.org/10.1038/labinvest.2011.144

    Article  CAS  PubMed  Google Scholar 

  82. Cantley L, Saunders C, Guttenberg M et al (2013) Loss of β-catenin induces multifocal periosteal chondroma-like masses in mice. Am J Pathol 182:917–927. https://doi.org/10.1016/j.ajpath.2012.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yuasa T, Kondo N, Yasuhara R et al (2009) Transient activation of Wnt/{beta}-catenin signaling induces abnormal growth plate closure and articular cartilage thickening in postnatal mice. Am J Pathol 175:1993–2003. https://doi.org/10.2353/ajpath.2009.081173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568

    CAS  PubMed  Google Scholar 

  85. Yamagami T, Molotkov A, Zhou CJ (2009) Canonical Wnt signaling activity during synovial joint development. J Mol Histol 40:311. https://doi.org/10.1007/s10735-009-9242-1

    Article  CAS  PubMed  Google Scholar 

  86. Bernard P, Fleming A, Lacombe A et al (2008) Wnt4 inhibits beta-catenin/TCF signalling by redirecting beta-catenin to the cell membrane. Biol Cell 100:167–177. https://doi.org/10.1042/bc20070072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bernardi H, Gay S, Fedon Y et al (2011) Wnt4 activates the canonical beta-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol 300:C1122–C1138. https://doi.org/10.1152/ajpcell.00214.2010

    Article  CAS  PubMed  Google Scholar 

  88. Rhee DK, Marcelino J, Baker M et al (2005) The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Investig 115:622–631. https://doi.org/10.1172/jci22263

    Article  CAS  PubMed  Google Scholar 

  89. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kobayashi T, Soegiarto DW, Yang Y et al (2005) Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Investig 115:1734–1742. https://doi.org/10.1172/jci24397

    Article  CAS  PubMed  Google Scholar 

  91. Mak KK, Kronenberg HM, Chuang P-T et al (2008) Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 135:1947–1956. https://doi.org/10.1242/dev.018044

    Article  CAS  PubMed  Google Scholar 

  92. Minina E, Wenzel HM, Kreschel C et al (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523–4534

    CAS  PubMed  Google Scholar 

  93. Minina E, Kreschel C, Naski MC et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449

    Article  CAS  PubMed  Google Scholar 

  94. Weir EC, Philbrick WM, Amling M et al (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245

    Article  CAS  PubMed  Google Scholar 

  95. Lanske B, Karaplis AC, Lee K et al (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–666

    Article  CAS  PubMed  Google Scholar 

  96. Karaplis AC, Luz A, Glowacki J et al (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289

    Article  CAS  PubMed  Google Scholar 

  97. Chung UI, Schipani E, McMahon AP et al (2001) Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Investig 107:295–304. https://doi.org/10.1172/jci11706

    Article  CAS  PubMed  Google Scholar 

  98. Koyama E, Ochiai T, Rountree RB et al (2007) Synovial joint formation during mouse limb skeletogenesis. Ann N Y Acad Sci 1116:100–112. https://doi.org/10.1196/annals.1402.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Decker RS, Koyama E, Pacifici M (2014) Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol 39:5–10. https://doi.org/10.1016/j.matbio.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  100. Niedermaier M, Schwabe GC, Fees S et al (2005) An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression. J Clin Investig 115:900–909. https://doi.org/10.1172/jci23675

    Article  CAS  PubMed  Google Scholar 

  101. Koziel L, Wuelling M, Schneider S et al (2005) Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development 132:5249–5260. https://doi.org/10.1242/dev.02097

    Article  CAS  PubMed  Google Scholar 

  102. Huang B-L, Trofka A, Furusawa A et al (2016) An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5′Hoxd–Gli3 antagonism. Nat Commun. https://doi.org/10.1038/ncomms12903

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gritli-Linde A, Lewis P, McMahon AP et al (2001) The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev Biol 236:364–386. https://doi.org/10.1006/dbio.2001.0336

    Article  CAS  PubMed  Google Scholar 

  104. Rockel JS, Yu C, Whetstone H et al (2016) Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. J Clin Investig 126:1649–1663. https://doi.org/10.1172/jci80205

    Article  PubMed  Google Scholar 

  105. Zhou J, Chen Q, Lanske B et al (2014) Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice. Arthritis Res Ther 16:R11. https://doi.org/10.1186/ar4437

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang C, Wei X, Chen C et al (2014) Indian hedgehog in synovial fluid is a novel marker for early cartilage lesions in human knee joint. Int J Mol Sci 15:7250–7265. https://doi.org/10.3390/ijms15057250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shuang F, Zhou Y, Hou S-X et al (2015) Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis. Sci Rep. https://doi.org/10.1038/srep10290

    Article  PubMed  PubMed Central  Google Scholar 

  108. Woods S, Barter MJ, Elliott HR et al (2018) miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol. https://doi.org/10.1016/j.matbio.2018.08.009

    Article  PubMed  Google Scholar 

  109. Guo X, Mak KK, Taketo MM et al (2009) The Wnt/β-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PLoS One 4:e6067. https://doi.org/10.1371/journal.pone.0006067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Macica C, Liang G, Nasiri A et al (2011) Genetic evidence of the regulatory role of parathyroid hormone-related protein in articular chondrocyte maintenance in an experimental mouse model. Arthritis Rheum 63:3333–3343. https://doi.org/10.1002/art.30515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen X, Macica CM, Nasiri A et al (2008) Regulation of articular chondrocyte proliferation and differentiation by Indian hedgehog and parathyroid hormone-related protein in mice. Arthritis Rheum 58:3788–3797. https://doi.org/10.1002/art.23985

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chen X, Macica CM, Dreyer BE et al (2006) Initial characterization of PTH-related protein gene-driven lacZ expression in the mouse. J Bone Miner Res 21:113–123. https://doi.org/10.1359/jbmr.051005

    Article  CAS  PubMed  Google Scholar 

  113. Sampson ER, Hilton MJ, Tian Y et al (2011) Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3002214

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ogawa H, Kozhemyakina E, Hung HH et al (2014) Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev 28:127–139. https://doi.org/10.1101/gad.231969.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Salazar VS, Gamer LW, Rosen V (2016) BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12:203–221. https://doi.org/10.1038/nrendo.2016.12

    Article  CAS  PubMed  Google Scholar 

  116. Retting KN, Song B, Yoon BS et al (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136:1093–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Francis-West PH, Parish J, Lee K et al (1999) BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res 296:111–119

    Article  CAS  PubMed  Google Scholar 

  118. Pathi S, Rutenberg JB, Johnson RL et al (1999) Interaction of Ihh and BMP/Noggin signaling during cartilage differentiation. Dev Biol 209:239–253. https://doi.org/10.1006/dbio.1998.9181

    Article  CAS  PubMed  Google Scholar 

  119. Singh PNP, Shea CA, Sonker SK et al (2018) Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement. Development. https://doi.org/10.1242/dev.153460

    Article  PubMed  Google Scholar 

  120. Singh PNP, Yadav US, Azad K et al (2018) NFIA and GATA3 are crucial regulators of embryonic articular cartilage differentiation. Development. https://doi.org/10.1242/dev.156554

    Article  PubMed  Google Scholar 

  121. Zhu W, Kim J, Cheng C et al (2006) Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone 39:61–71. https://doi.org/10.1016/j.bone.2005.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    Article  CAS  PubMed  Google Scholar 

  123. Egawa S, Saito D, Abe G et al (2018) Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum. R Soc Open Sci. https://doi.org/10.1098/rsos.180604

    Article  PubMed  PubMed Central  Google Scholar 

  124. Amarilio R, Viukov SV, Sharir A et al (2007) HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134:3917–3928. https://doi.org/10.1242/dev.008441

    Article  CAS  PubMed  Google Scholar 

  125. Brunet LJ, McMahon JA, McMahon AP et al (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280:1455–1457

    Article  CAS  PubMed  Google Scholar 

  126. Wijgerde M, Karp S, McMahon J et al (2005) Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 286:149–157. https://doi.org/10.1016/j.ydbio.2005.07.016

    Article  CAS  PubMed  Google Scholar 

  127. Seemann P, Brehm A, König J et al (2009) Mutations in GDF5 reveal a key residue mediating BMP inhibition by NOGGIN. PLoS Genet 5:e1000747. https://doi.org/10.1371/journal.pgen.1000747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Garrison P, Yue S, Hanson J et al (2017) Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage. PLoS One 12:e0176752. https://doi.org/10.1371/journal.pone.0176752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gelse K, Ekici AB, Cipa F et al (2012) Molecular differentiation between osteophytic and articular cartilage–clues for a transient and permanent chondrocyte phenotype. Osteoarthr Cartil 20:162–171. https://doi.org/10.1016/j.joca.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  130. Chang SH, Mori D, Kobayashi H et al (2019) Excessive mechanical loading promotes osteoarthritis through the gremlin-1–NF-κB pathway. Nat Commun 10:1442. https://doi.org/10.1038/s41467-019-09491-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shen J, Li J, Wang B et al (2013) Deletion of the transforming growth factor beta receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum 65:3107–3119. https://doi.org/10.1002/art.38122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Finnson KW, Chi Y, Bou-Gharios G et al (2012) TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed) 4:251–268

    Article  Google Scholar 

  133. Hayes AJ, MacPherson S, Morrison H et al (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl.) 203:469–479. https://doi.org/10.1007/s004290100178

    Article  CAS  Google Scholar 

  134. van Caam A, Madej W, Thijssen E et al (2016) Expression of TGFbeta-family signalling components in ageing cartilage: age-related loss of TGFbeta and BMP receptors. Osteoarthr Cartil 24:1235–1245. https://doi.org/10.1016/j.joca.2016.02.008

    Article  PubMed  Google Scholar 

  135. Oo WM, Yu SP, Daniel MS et al (2018) Disease-modifying drugs in osteoarthritis: current understanding and future therapeutics. Expert Opin Emerg Drugs 23:331–347. https://doi.org/10.1080/14728214.2018.1547706

    Article  CAS  PubMed  Google Scholar 

  136. Pelton RW, Saxena B, Jones M et al (1991) Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    Article  CAS  PubMed  Google Scholar 

  137. Wu M, Chen G, Li Y-P (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lim J, Tu X, Choi K et al (2015) BMP-Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev Biol 400:132–138. https://doi.org/10.1016/j.ydbio.2015.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bénazet JD, Pignatti E, Nugent A et al (2012) Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds. Development 139:4250–4260. https://doi.org/10.1242/dev.084822

    Article  CAS  PubMed  Google Scholar 

  140. Zhang J, Tan X, Li W et al (2005) Smad4 is required for the normal organization of the cartilage growth plate. Dev Biol 284:311–322. https://doi.org/10.1016/j.ydbio.2005.05.036

    Article  CAS  PubMed  Google Scholar 

  141. Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27. https://doi.org/10.1002/dvdy.21388

    Article  CAS  PubMed  Google Scholar 

  142. Ohbayashi N, Shibayama M, Kurotaki Y et al (2002) FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 16:870–879. https://doi.org/10.1101/gad.965702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu Z, Xu J, Colvin JS et al (2002) Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 16:859–869. https://doi.org/10.1101/gad.965602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen L, Adar R, Yang X et al (1999) Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Investig 104:1517–1525. https://doi.org/10.1172/jci6690

    Article  CAS  PubMed  Google Scholar 

  145. Shiang R, Thompson LM, Zhu YZ et al (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342

    Article  CAS  PubMed  Google Scholar 

  146. Deng C, Li C, Chen L et al (2001) A Ser365 → Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 10:457–466. https://doi.org/10.1093/hmg/10.5.457

    Article  PubMed  Google Scholar 

  147. Peters K, Ornitz D, Werner S et al (1993) Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 155:423–430. https://doi.org/10.1006/dbio.1993.1040

    Article  CAS  PubMed  Google Scholar 

  148. Molténi A, Modrowski D, Hott M et al (1999) Differential expression of fibroblast growth factor receptor-1, -2, and -3 and syndecan-1, -2, and -4 in neonatal rat mandibular condyle and calvaria during osteogenic differentiation in vitro. Bone 24:337–347. https://doi.org/10.1016/s8756-3282(98)00191-4

    Article  PubMed  Google Scholar 

  149. Hellingman CA, Koevoet W, Kops N et al (2010) Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng Part A 16:545–556. https://doi.org/10.1089/ten.tea.2008.0551

    Article  CAS  PubMed  Google Scholar 

  150. Lazarus JE, Hegde A, Andrade AC et al (2007) Fibroblast growth factor expression in the postnatal growth plate. Bone 40:577–586. https://doi.org/10.1016/j.bone.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  151. Hojo H, Ohba S, Taniguchi K et al (2013) Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem 288:9924–9932. https://doi.org/10.1074/jbc.m112.409342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kohn A, Dong Y, Mirando AJ et al (2012) Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development 139:1198–1212. https://doi.org/10.1242/dev.070649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ellsworth JL, Berry J, Bukowski T et al (2002) Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthr Cartil 10:308–320. https://doi.org/10.1053/joca.2002.0514

    Article  CAS  PubMed  Google Scholar 

  154. Karuppaiah K, Yu K, Lim J et al (2016) FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development 143:1811–1822. https://doi.org/10.1242/dev.131722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Colvin JS, Bohne BA, Harding GW et al (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397. https://doi.org/10.1038/ng0496-390

    Article  CAS  PubMed  Google Scholar 

  156. Wen X, Li X, Tang Y et al (2016) Chondrocyte FGFR3 regulates bone mass by inhibiting osteogenesis. J Biol Chem 291:24912–24921. https://doi.org/10.1074/jbc.m116.730093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li M, Seki Y, Freitas PHL et al (2010) FGFR3 down-regulates PTH/PTHrP receptor gene expression by mediating JAK/STAT signaling in chondrocytic cell line. J Electron Microsc (Tokyo) 59:227–236. https://doi.org/10.1093/jmicro/dfq002

    Article  CAS  Google Scholar 

  158. Naski MC, Colvin JS, Coffin JD et al (1998) Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125:4977–4988

    CAS  PubMed  Google Scholar 

  159. Zhou S, Xie Y, Tang J et al (2015) FGFR3 deficiency causes multiple chondroma-like lesions by upregulating hedgehog signaling. PLoS Genet 11:e1005214. https://doi.org/10.1371/journal.pgen.1005214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Reinhold MI, Naski MC (2007) Direct interactions of Runx2 and canonical Wnt signaling induce FGF18. J Biol Chem 282:3653–3663. https://doi.org/10.1074/jbc.m608995200

    Article  CAS  PubMed  Google Scholar 

  161. Shimokawa T, Furukawa Y, Sakai M et al (2003) Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res 63:6116–6120

    CAS  PubMed  Google Scholar 

  162. Li X, Ellman MB, Kroin JS et al (2012) Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. J Cell Biochem 113:2532–2542. https://doi.org/10.1002/jcb.24129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mori Y, Saito T, Chang SH et al (2014) Identification of fibroblast growth factor-18 as a molecule to protect adult articular cartilage by gene expression profiling. J Biol Chem 289:10192–10200. https://doi.org/10.1074/jbc.m113.524090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Valverde-Franco G, Binette JS, Li W et al (2006) Defects in articular cartilage metabolism and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet 15:1783–1792. https://doi.org/10.1093/hmg/ddl100

    Article  CAS  PubMed  Google Scholar 

  165. Zhou S, Xie Y, Li W et al (2016) Conditional deletion of Fgfr3 in chondrocytes leads to osteoarthritis-like defects in temporomandibular joint of adult mice. Sci Rep 6:24039. https://doi.org/10.1038/srep24039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tang J, Su N, Zhou S et al (2016) Fibroblast growth factor receptor 3 inhibits osteoarthritis progression in the knee joints of adult mice. Arthritis Rheumatol 68:2432–2443. https://doi.org/10.1002/art.39739

    Article  CAS  PubMed  Google Scholar 

  167. Ellman MB, Yan D, Ahmadinia K et al (2013) Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem 114:735–742. https://doi.org/10.1002/jcb.24418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yan D, Chen D, Cool SM et al (2011) Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther 13:R130. https://doi.org/10.1186/ar3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shu CC, Jackson MT, Smith MM et al (2016) Ablation of perlecan domain 1 heparan sulfate reduces progressive cartilage degradation, synovitis, and osteophyte size in a preclinical model of posttraumatic osteoarthritis. Arthritis Rheumatol 68:868–879. https://doi.org/10.1002/art.39529

    Article  CAS  PubMed  Google Scholar 

  170. Moore EE, Bendele AM, Thompson DL et al (2005) Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthr Cartil 13:623–631. https://doi.org/10.1016/j.joca.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  171. Evans CH, Kraus VB, Setton LA (2014) Progress in intra-articular therapy. Nat Rev Rheumatol 10:11–22. https://doi.org/10.1038/nrrheum.2013.159

    Article  CAS  PubMed  Google Scholar 

  172. Zhang Z, Wang Y, Li M et al (2014) Fibroblast growth factor 18 increases the trophic effects of bone marrow mesenchymal stem cells on chondrocytes isolated from late stage osteoarthritic patients. Stem Cells Int. https://doi.org/10.1155/2014/125683

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kozhemyakina E, Zhang M, Ionescu A et al (2015) Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol 67:1261–1273. https://doi.org/10.1002/art.39030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tavella S, Biticchi R, Schito A et al (2004) Targeted expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression. J Bone Miner Res 19:1678–1688. https://doi.org/10.1359/jbmr.040706

    Article  CAS  PubMed  Google Scholar 

  175. Schumacher BL, Block JA, Schmid TM et al (1994) A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch Biochem Biophys 311:144–152. https://doi.org/10.1006/abbi.1994.1219

    Article  CAS  PubMed  Google Scholar 

  176. Schumacher BL, Hughes CE, Kuettner KE et al (1999) Immunodetection and partial cDNA sequence of the proteoglycan, superficial zone protein, synthesized by cells lining synovial joints. J Orthop Res 17:110–120. https://doi.org/10.1002/jor.1100170117

    Article  CAS  PubMed  Google Scholar 

  177. Coles JM, Zhang L, Blum JJ et al (2010) Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. Arthritis Rheum 62:1666–1674. https://doi.org/10.1002/art.27436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ruan MZC, Erez A, Guse K et al (2013) Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med 5:176ra34. https://doi.org/10.1126/scitranslmed.3005409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kosinska MK, Ludwig TE, Liebisch G et al (2015) Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS One 10:e0125192. https://doi.org/10.1371/journal.pone.0125192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ogawa H, Matsumoto K, Terabayashi N et al (2017) Association of lubricin concentration in synovial fluid and clinical status of osteoarthritic knee. Mod Rheumatol 27:489–492. https://doi.org/10.1080/14397595.2016.1209829

    Article  CAS  PubMed  Google Scholar 

  181. Flannery CR, Zollner R, Corcoran C et al (2009) Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum 60:840–847. https://doi.org/10.1002/art.24304

    Article  CAS  PubMed  Google Scholar 

  182. Cui Z, Xu C, Li X et al (2015) Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats. Bone 74:37–47. https://doi.org/10.1016/j.bone.2014.12.065

    Article  CAS  PubMed  Google Scholar 

  183. Bao JP, Chen WP, Wu LD (2011) Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol Biol Rep 38:2879–2885. https://doi.org/10.1007/s11033-010-9949-9

    Article  CAS  PubMed  Google Scholar 

  184. Grogan SP, Miyaki S, Asahara H et al (2009) Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11:R85. https://doi.org/10.1186/ar2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee Y, Choi J, Hwang NS (2018) Regulation of lubricin for functional cartilage tissue regeneration: a review. Biomater Res 22:9. https://doi.org/10.1186/s40824-018-0118-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Matsuzaki T, Alvarez-Garcia O, Mokuda S et al (2018) FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan0746

    Article  PubMed  PubMed Central  Google Scholar 

  187. Niikura T, Reddi AH (2007) Differential regulation of lubricin/superficial zone protein by transforming growth factor beta/bone morphogenetic protein superfamily members in articular chondrocytes and synoviocytes. Arthritis Rheum 56:2312–2321. https://doi.org/10.1002/art.22659

    Article  CAS  PubMed  Google Scholar 

  188. Hill A, Waller KA, Cui Y et al (2015) Lubricin restoration in a mouse model of congenital deficiency. Arthritis Rheumatol 67:3070–3081. https://doi.org/10.1002/art.39276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612. https://doi.org/10.1242/dev.063610

    Article  CAS  Google Scholar 

  190. Kovall RA, Gebelein B, Sprinzak D et al (2017) The canonical Notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell 41:228–241. https://doi.org/10.1016/j.devcel.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dong Y, Jesse AM, Kohn A et al (2010) RBPjκ-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development (Cambridge, England) 137:1461–1471. https://doi.org/10.1242/dev.042911

    Article  CAS  Google Scholar 

  192. Mead TJ, Yutzey KE (2009) Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci USA 106:14420–14425. https://doi.org/10.1073/pnas.0902306106

    Article  PubMed  Google Scholar 

  193. Mirando AJ, Liu Z, Moore T et al (2013) RBP-Jkappa-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum 65:2623–2633. https://doi.org/10.1002/art.38076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hosaka Y, Saito T, Sugita S et al (2013) Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc Natl Acad Sci USA 110:1875–1880. https://doi.org/10.1073/pnas.1207458110

    Article  PubMed  Google Scholar 

  195. Liu Z, Chen J, Mirando AJ et al (2015) A dual role for NOTCH signaling in joint cartilage maintenance and osteoarthritis. Sci Signal 8:ra71. https://doi.org/10.1126/scisignal.aaa3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Dowthwaite GP, Bishop JC, Redman SN et al (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117:889–897. https://doi.org/10.1242/jcs.00912

    Article  CAS  PubMed  Google Scholar 

  197. Li L, Newton PT, Bouderlique T et al (2017) Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. FASEB J 31:1067–1084. https://doi.org/10.1096/fj.201600918r

    Article  PubMed  Google Scholar 

  198. Karlsson C, Brantsing C, Egell S et al (2008) Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs 188:287–298. https://doi.org/10.1159/000121610

    Article  CAS  PubMed  Google Scholar 

  199. Liu Z, Ren Y, Mirando AJ et al (2016) Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance. Osteoarthr Cartil 24:740–751. https://doi.org/10.1016/j.joca.2015.10.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Saito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chijimatsu, R., Saito, T. Mechanisms of synovial joint and articular cartilage development. Cell. Mol. Life Sci. 76, 3939–3952 (2019). https://doi.org/10.1007/s00018-019-03191-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03191-5

Keywords

Navigation