Skip to main content
Log in

Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection

  • Review
  • Published:
Frontiers in Biology

Abstract

Toxoplasma gondii is an intracellular parasite involved in the etiology of various behavioral and hormonal alterations in humans and rodents. Various mechanisms, including induction changes of testosterone production, have been proposed in the etiology of behavioral alterations during T. gondii infection. However, controversy remains about the effects of T. gondii infection on testosterone production; in some studies, increased levels of testosterone were reported, whereas other studies reported decreased levels. This is a significant point, because testosterone has been shown to play important roles in various processes, from reproduction to fear and behavior. This contradiction seems to indicate that different factors—primarily parasite strains and host variations—have diverse effects on the intensity of T. gondii infection, which consequently has diverse effects on testosterone production and behavioral alterations. This paper reviews the role of parasite strains, host variations, and intensity of T. gondii infection on behavioral alterations and testosterone production, as well as the role of testosterone in the etiology of these alterations during toxoplasmosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdoli A (2013). Toxoplasma gondii and neuropsychiatric diseases: strain hypothesis. Neurol Sci, 34(9): 1697–1698

    PubMed  Google Scholar 

  • Abdoli A, Dalimi A, Arbabi M, Ghaffarifar F (2014). Neuropsychiatric manifestations of latent toxoplasmosis on mothers and their offspring. J Matern Fetal Neonatal Med, doi: 10.3109/14767058.2013.858685

    Google Scholar 

  • Abdoli A, Dalimi A, Movahedin M (2012). Impaired reproductive function of male rats infected with Toxoplasma gondii. Andrologia, 44(Suppl 1): 679–687

    PubMed  Google Scholar 

  • Achermann J C, Jameson J L (1999). Fertility and infertility: genetic contributions from the hypothalamic-pituitary-gonadal axis. Mol Endocrinol, 13(6): 812–818

    PubMed  CAS  Google Scholar 

  • Aikey J L, Nyby J G, Anmuth D M, James P J (2002). Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav, 42(4): 448–460

    PubMed  CAS  Google Scholar 

  • Alonso R, Chaudieu I, Diorio J, Krishnamurthy A, Quirion R, Boksa P (1993). Interleukin-2 modulates evoked release of [3H]dopamine in rat cultured mesencephalic cells. J Neurochem, 61(4): 1284–1290

    PubMed  CAS  Google Scholar 

  • Arantes T P, Lopes W D, Ferreira R M, Pieroni J S, Pinto V M, Sakamoto C A, Costa A J (2009). Toxoplasma gondii: evidence for the transmission by semen in dogs. Exp Parasitol, 123(2): 190–194

    PubMed  CAS  Google Scholar 

  • Berdoy M, Webster J P, Macdonald D W (1995). Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology, 111(Pt 4): 403–409

    PubMed  Google Scholar 

  • Berdoy M, Webster J P, Macdonald D W (2000). Fatal attraction in rats infected with Toxoplasma gondii. Proc Biol Sci, 267(1452): 1591–1594

    PubMed Central  PubMed  CAS  Google Scholar 

  • Booth A, Granger D A, Mazur A, Kivlighan K T (2006). Testosterone and social behavior. Soc Forces, 85(1): 167–191

    Google Scholar 

  • Choksi N Y, Jahnke G D, St Hilaire C, Shelby M (2003). Role of thyroid hormones in human and laboratory animal reproductive health. Birth Defects Res B Dev Reprod Toxicol, 68(6): 479–491

    PubMed  CAS  Google Scholar 

  • Cox R M, John-Alder H B (2007). Increased mite parasitism as a cost of testosterone in male striped plateau lizards Sceloporus virgatus. Funct Ecol, 21(2): 327–334

    Google Scholar 

  • Dalimi A, Abdoli A (2012). Latent toxoplasmosis and human. Iran J Parasitol, 7(1): 1–17

    CAS  Google Scholar 

  • Dalimi A, Abdoli A (2013). Toxoplasma gondii and male reproduction impairment: a new aspect of toxoplasmosis research. Jundishapur J Microbiol, 6(8): e7184

    Google Scholar 

  • Dardé M L (2008). Toxoplasma gondii, “new” genotypes and virulence. Parasite, 15(3): 366–371

    PubMed  Google Scholar 

  • Dass S A, Vasudevan A, Dutta D, Soh L J, Sapolsky R M, Vyas A (2011). Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS ONE, 6(11): e27229

    PubMed Central  PubMed  CAS  Google Scholar 

  • de Moraes E P, Batista A M, Faria E B, Freire R L, Freitas A C, Silva M A, Braga V A, Mota R A (2010). Experimental infection by Toxoplasma gondii using contaminated semen containing different doses of tachyzoites in sheep. Vet Parasitol, 170(3–4): 318–322

    PubMed  Google Scholar 

  • Dominguez J M, Hull E M (2005). Dopamine, the medial preoptic area, and male sexual behavior. Physiol Behav, 86(3): 356–368

    PubMed  CAS  Google Scholar 

  • Dubey J P, Ferreira L R, Martins J, McLeod R (2012). Oral oocystinduced mouse model of toxoplasmosis: effect of infection with Toxoplasma gondii strains of different genotypes, dose, and mouse strains (transgenic, out-bred, in-bred) on pathogenesis and mortality. Parasitology, 139(1): 1–13

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dubey J P, Frenkel J K (1998). Toxoplasmosis of rats: a review, with considerations of their value as an animal model and their possible role in epidemiology. Vet Parasitol, 77(1): 1–32

    PubMed  CAS  Google Scholar 

  • Eisenegger C, Haushofer J, Fehr E (2011). The role of testosterone in social interaction. Trends Cogn Sci, 15(6): 263–271

    PubMed  CAS  Google Scholar 

  • Fabiani S, Pinto B, Bruschi F (2013). Toxoplasmosis and neuropsychiatric diseases: can serological studies establish a clear relationship? Neurol Sci, 34(4): 417–425

    PubMed  Google Scholar 

  • Flegr J (2007). Effects of toxoplasma on human behavior. Schizophr Bull, 33(3): 757–760

    PubMed Central  PubMed  Google Scholar 

  • Flegr J (2010). Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol (Praha), 57(2): 81–87

    Google Scholar 

  • Flegr J (2013a). Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol, 216(Pt 1): 127–133

    PubMed  Google Scholar 

  • Flegr J (2013b). How and why Toxoplasma makes us crazy. Trends Parasitol, 29(4): 156–163

    PubMed  Google Scholar 

  • Flegr J, Hruskový M, Hodná Z, Novotná M, Hanusová J (2005). Body height, body mass index, waist-hip ratio, fluctuating asymmetry and second to fourth digit ratio in subjects with latent toxoplasmosis. Parasitology, 130(Pt 6): 621–628

    PubMed  CAS  Google Scholar 

  • Flegr J, Lindová J, Kodym P (2008a). Sex-dependent toxoplasmosisassociated differences in testosterone concentration in humans. Parasitology, 135(4): 427–431

    PubMed  CAS  Google Scholar 

  • Flegr J, Lindová J, Pivoñková V, Havlícek J (2008b). Brief Communication: Latent toxoplasmosis and salivary testosterone concentration—important confounding factors in second to fourth digit ratio studies. Am J Phys Anthropol, 137(4): 479–484

    PubMed  Google Scholar 

  • Flegr J, Novotná M, Lindová J, Havlícek J (2008). Neurophysiological effect of the Rh factor. Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuro Endocrinol Lett, 29(4): 475–481

    PubMed  Google Scholar 

  • Gaskell E A, Smith J E, Pinney J W, Westhead D R, McConkey G A (2009). A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS ONE, 4(3): e4801

    PubMed Central  PubMed  Google Scholar 

  • Gatkowska J, Wieczorek M, Dziadek B, Dzitko K, Dlugonska H (2013). Sex-dependent neurotransmitter level changes in brains of Toxoplasma gondii infected mice. Exp Parasitol, 133(1): 1–7

    PubMed  CAS  Google Scholar 

  • Grear D A, Perkins S E, Hudson P J (2009). Does elevated testosterone result in increased exposure and transmission of parasites? Ecol Lett, 12(6): 528–537

    PubMed  Google Scholar 

  • Groër MW, Yolken RH, Xiao JC, Beckstead JW, Fuchs D, Mohapatra SS, Seyfang A, Postolache TT (2011). Prenatal depression and anxiety in Toxoplasma gondii-positive women. Am J Obstet Gynecol, 204:433.e1–7

    Google Scholar 

  • Hay J, Aitken P P, Graham D I (1984). Toxoplasma infection and response to novelty in mice. Z Parasitenkd, 70(5): 575–588

    PubMed  CAS  Google Scholar 

  • Hay J, Hutchison W M, Aitken P P, Graham D I (1983). The effect of congenital and adult-acquired Toxoplasma infections on activity and responsiveness to novel stimulation in mice. Ann Trop Med Parasitol, 77(5): 483–495

    PubMed  CAS  Google Scholar 

  • Hermans E J, Putman P, Baas JM, Koppeschaar H P, van Honk J (2006). A single administration of testosterone reduces fear-potentiated startle in humans. Biol Psychiatry, 59(9): 872–874

    PubMed  CAS  Google Scholar 

  • Hermes G, Ajioka J W, Kelly K A, Mui E, Roberts F, Kasza K, Mayr T, Kirisits M J, Wollmann R, Ferguson D J, Roberts C W, Hwang J H, Trendler T, Kennan R P, Suzuki Y, Reardon C, Hickey WF, Chen L, McLeod R (2008). Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation, 5(1): 48

    PubMed Central  PubMed  Google Scholar 

  • Hill R D, Gouffon J S, Saxton A M, Su C (2012). Differential gene expression in mice infected with distinct Toxoplasma strains. Infect Immun, 80(3): 968–974

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hodková H, Kodym P, Flegr J (2007b). Poorer results of mice with latent toxoplasmosis in learning tests: impaired learning processes or the novelty discrimination mechanism? Parasitology, 134(Pt 10): 1329–1337

    PubMed  Google Scholar 

  • Hodková H, Kolbeková P, Skallová A, Lindová J, Flegr J (2007a). Higher perceived dominance in Toxoplasma infected men—a new evidence for role of increased level of testosterone in toxoplasmosisassociated changes in human behavior. Neuro Endocrinol Lett, 28(2): 110–114

    PubMed  Google Scholar 

  • Hönekopp J, Bartholdt L, Beier L, Liebert A (2007). Second to fourth digit length ratio (2D:4D) and adult sex hormone levels: new data and a meta-analytic review. Psychoneuroendocrinology, 32(4): 313–321

    PubMed  Google Scholar 

  • Hughes V L, Randolph S E (2001). Testosterone increases the transmission potential of tick-borne parasites. Parasitology, 123(Pt 4): 365–371

    PubMed  CAS  Google Scholar 

  • Hull E M, Du J, Lorrain D S, Matuszewich L (1995). Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J Neurosci, 15(11): 7465–7471

    PubMed  CAS  Google Scholar 

  • Hull E M, Du J, Lorrain D S, Matuszewich L (1997). Testosterone, preoptic dopamine, and copulation in male rats. Brain Res Bull, 44(4): 327–333

    PubMed  CAS  Google Scholar 

  • Hull E M, Muschamp J W, Sato S (2004). Dopamine and serotonin: influences on male sexual behavior. Physiol Behav, 83(2): 291–307

    PubMed  CAS  Google Scholar 

  • Hutchison W M, Aitken P P, Wells W P (1980). Chronic Toxoplasma infections and familiarity-novelty discrimination in the mouse. Ann Trop Med Parasitol, 74(2): 145–150

    PubMed  CAS  Google Scholar 

  • Innes E A (1997). Toxoplasmosis: comparative species susceptibility and host immune response. Comp Immunol Microbiol Infect Dis, 20(2): 131–138

    PubMed  CAS  Google Scholar 

  • James W H (2008). Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. J Endocrinol, 198(1): 3–15

    PubMed  CAS  Google Scholar 

  • James W H (2010). Potential solutions to problems posed by the offspring sex ratios of people with parasitic and viral infections. Folia Parasitol (Praha), 57(2): 114–120

    Google Scholar 

  • Kaňková S, Kodym P, Flegr J (2011). Direct evidence of Toxoplasma-induced changes in serum testosterone in mice. Exp Parasitol, 128(3): 181–183

    PubMed  Google Scholar 

  • Kaňková S, Kodym P, Frynta D, Vavrinová R, Kubena A, Flegr J (2007b). Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology, 134(Pt 12): 1709–1717

    PubMed  Google Scholar 

  • Kaňková Š, Sulc J, Flegr J (2010). Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology, 137(12): 1773–1779

    PubMed  Google Scholar 

  • Kanková Š, Sulc J, Nouzová K, Fajfrlík K, Frynta D, Flegr J (2007a). Women infected with parasite Toxoplasma have more sons. Naturwissenschaften, 94(2): 122–127

    PubMed  Google Scholar 

  • Kannan G, Moldovan K, Xiao J C, Yolken R H, Jones-Brando L, Pletnikov M V (2010). Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol (Praha), 57(2): 151–155

    Google Scholar 

  • Khaki A, Farzadi L, Ahmadi S, Ghadamkheir E, Khaki AA, shojaee S, Sahizadeh R (2011). Recovery of spermatogenesis by Allium cepa in Toxoplasma gondii infected rats. Afr. J. Pharm. Pharmacol, 5: 903–907

    Google Scholar 

  • King J A, De Oliveira W L, Patel N (2005). Deficits in testosterone facilitate enhanced fear response. Psychoneuroendocrinology, 30(4): 333–340

    PubMed  CAS  Google Scholar 

  • Klein S L (2000). The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev, 24(6): 627–638

    PubMed  CAS  Google Scholar 

  • Lamberton P H, Donnelly C A, Webster J P (2008). Specificity of the Toxoplasma gondii-altered behaviour to definitive versus nondefinitive host predation risk. Parasitology, 135(10): 1143–1150

    PubMed  CAS  Google Scholar 

  • Lim A, Kumar V, Hari Dass S A, Vyas A (2013). Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol Ecol, 22(1): 102–110

    PubMed  CAS  Google Scholar 

  • Lindová J, Kubena A A, Sturcová H, Krivohlavá R, Novotná M, Rubesová A, Havlícek J, Kodym P, Flegr J (2010). Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol (Praha), 57(2): 136–142

    Google Scholar 

  • Lindová J, Novotná M, Havlícek J, Jozífková E, Skallová A, Kolbeková P, Hodný Z, Kodym P, Flegr J (2006). Gender differences in behavioural changes induced by latent toxoplasmosis. Int J Parasitol, 36(14): 1485–1492

    PubMed  Google Scholar 

  • Liu S G, Qin C, Yao Z J, Wang D (2006). Study on the transmission of Toxoplasma gondii by semen in rabbits. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 24(3): 166–170

    PubMed  Google Scholar 

  • Lopes W D, Rodriguez J D, Souza F A, dos Santos T R, dos Santos R S, Rosanese W M, Lopes W R, Sakamoto C A, da Costa A J (2013). Sexual transmission of Toxoplasma gondii in sheep. Vet Parasitol, 195(1–2): 47–56

    PubMed  Google Scholar 

  • Lutchmaya S, Baron-Cohen S, Raggatt P, Knickmeyer R, Manning J T (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Hum Dev, 77(1–2): 23–28

    PubMed  CAS  Google Scholar 

  • Mack D G, Johnson J J, Roberts F, Roberts C W, Estes R G, David C, Grumet F C, McLeod R (1999). HLA-class II genes modify outcome of Toxoplasma gondii infection. Int J Parasitol, 29(9): 1351–1358

    PubMed  CAS  Google Scholar 

  • McConkey G A, Martin H L, Bristow G C, Webster J P (2013). Toxoplasma gondii infection and behaviour-location, location, location? J Exp Biol, 216(Pt 1): 113–119

    PubMed Central  PubMed  Google Scholar 

  • Miller C M, Boulter N R, Ikin R J, Smith N C (2009). The immunobiology of the innate response to Toxoplasma gondii. Int J Parasitol, 39(1): 23–39

    PubMed  CAS  Google Scholar 

  • Mitra R, Sapolsky R M, Vyas A (2013). Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion. Dis Model Mech, 6(2): 516–520

    PubMed Central  PubMed  CAS  Google Scholar 

  • Montoya E R, Terburg D, Bos P A, van Honk J (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motiv Emot, 36(1): 65–73

    PubMed Central  PubMed  Google Scholar 

  • Montoya J G, Liesenfeld O (2004). Toxoplasmosis. Lancet, 363(9425): 1965–1976

    PubMed  CAS  Google Scholar 

  • Mougeot F, Redpath S M, Piertney S B (2006). Elevated spring testosterone increases parasite intensity in male red grouse. Behav Ecol, 17(1): 117–125

    Google Scholar 

  • Muehlenbein M P, Bribiescas R G (2005). Testosterone-mediated immune functions and male life histories. Am J Hum Biol, 17(5): 527–558

    PubMed  Google Scholar 

  • Nava-Castro K, Hernández-Bello R, Muñiz-Hernández S, Camacho-Arroyo I, Morales-Montor J (2012). Sex steroids, immune system, and parasitic infections: facts and hypotheses. Ann N Y Acad Sci, 1262(1): 16–26

    PubMed  CAS  Google Scholar 

  • Novotná M, Havlícek J, Smith A P, Kolbeková P, Skallová A, Klose J, Gasová Z, Písacka M, Sechovská M, Flegr J (2008). Toxoplasma and reaction time: role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology, 135(11): 1253–1261

    PubMed  Google Scholar 

  • Oktenli C, Doganci L, Ozgurtas T, Araz R E, Tanyuksel M, Musabak U, Sanisoglu S Y, Yesilova Z, Erbil M K, Inal A (2004). Transient hypogonadotrophic hypogonadism in males with acute toxoplasmosis: suppressive effect of interleukin-1 beta on the secretion of GnRH. Hum Reprod, 19(4): 859–866

    PubMed  CAS  Google Scholar 

  • Petitto J M, McCarthy D B, Rinker C M, Huang Z, Getty T (1997). Modulation of behavioral and neurochemical measures of forebrain dopamine function in mice by species-specific interleukin-2. J Neuroimmunol, 73(1–2): 183–190

    PubMed  CAS  Google Scholar 

  • Prandovszky E, Gaskell E, Martin H, Dubey J P, Webster J P, McConkey G A (2011). The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS ONE, 6(9): e23866

    PubMed Central  PubMed  CAS  Google Scholar 

  • Prast H, Philippu A (2001). Nitric oxide as modulator of neuronal function. Prog Neurobiol, 64(1): 51–68

    PubMed  CAS  Google Scholar 

  • Robert-Gangneux F, Dardé ML (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev, 25(2): 264–296

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roberts C W, Walker W, Alexander J (2001). Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev, 14(3): 476–488

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwarcz R, Hunter C A (2007). Toxoplasma gondii and schizophrenia: linkage through astrocyte-derived kynurenic acid? Schizophr Bull, 33(3): 652–653

    PubMed Central  PubMed  Google Scholar 

  • Shirbazou S, Abasian L, Meymand F T (2011). Effects of Toxoplasma gondii infection on plasma testosterone and cortisol level and stress index on patients referred to Sina hospital, Tehran. Jundishapur J Microbiol, 4: 167–173

    Google Scholar 

  • Skallová A, Kodym P, Frynta D, Flegr J (2006). The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology, 133(Pt 5): 525–535

    PubMed  Google Scholar 

  • Soh L J, Vasudevan A, Vyas A (2013). Infection with Toxoplasma gondii does not elicit predator aversion in male mice nor increase their attractiveness in terms of mate choice. Parasitol Res, 112(9): 3373–3378

    PubMed  Google Scholar 

  • Stahl W, Dias J A, Turek G (1985). Hypothalamic-adenohypophyseal origin of reproductive failure in mice following chronic infection with Toxoplasma gondii. Proc Soc Exp Biol Med, 178(2): 246–249

    PubMed  CAS  Google Scholar 

  • Stahl W, Dias J A, Turek G, Kaneda Y (1995). Etiology of ovarian dysfunction in chronic murine toxoplasmosis. Parasitol Res, 81(2): 114–120

    PubMed  CAS  Google Scholar 

  • Stahl W, Kaneda Y (1998a). Impaired thyroid function in murine toxoplasmosis. Parasitology, 117(Pt 3): 217–222

    PubMed  CAS  Google Scholar 

  • Stahl W, Kaneda Y (1998b). Aetiology of thyroidal dysfunction in murine toxoplasmosis. Parasitology, 117(Pt 3): 223–227

    PubMed  CAS  Google Scholar 

  • Stahl W, Kaneda Y, Noguchi T (1994). Reproductive failure in mice chronically infected with Toxoplasma gondii. Parasitol Res, 80(1): 22–28

    PubMed  CAS  Google Scholar 

  • Stibbs H H (1985). Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol, 79(2): 153–157

    PubMed  CAS  Google Scholar 

  • Stutz A, Kessler H, Kaschel M E, Meissner M, Dalpke A H (2012). Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by Toxoplasma gondii. Immunobiology, 217(1): 28–36

    PubMed  CAS  Google Scholar 

  • Sullivan W J Jr, Jeffers V (2012). Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev, 36(3): 717–733

    PubMed Central  PubMed  CAS  Google Scholar 

  • Suzuki Y, Wong S Y, Grumet F C, Fessel J, Montoya J G, Zolopa A R, Portmore A, Schumacher-Perdreau F, Schrappe M, Köppen S, Ruf B, Brown B W, Remington J S (1996). Evidence for genetic regulation of susceptibility to toxoplasmic encephalitis in AIDS patients. J Infect Dis, 173(1): 265–268

    PubMed  CAS  Google Scholar 

  • Tenter A M, Heckeroth A R, Weiss L M (2000). Toxoplasma gondii: from animals to humans. Int J Parasitol, 30(12–13): 1217–1258

    PubMed Central  PubMed  CAS  Google Scholar 

  • van Honk J, Peper J S, Schutter D J (2005). Testosterone reduces unconscious fear but not consciously experienced anxiety: implications for the disorders of fear and anxiety. Biol Psychiatry, 58(3): 218–225

    PubMed  Google Scholar 

  • Vyas A (2013). Parasite-augmented mate choice and reduction in innate fear in rats infected by Toxoplasma gondii. J Exp Biol, 216(Pt 1): 120–126

    PubMed  Google Scholar 

  • Vyas A, Kim S K, Giacomini N, Boothroyd J C, Sapolsky R M (2007). Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA, 104(15): 6442–6447

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner M S, Wajner SM, Maia A L (2008). The role of thyroid hormone in testicular development and function. J Endocrinol, 199(3): 351–365

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wanderley F S, Porto WJ, Câmara D R, da Cruz N L, Feitosa B C, Freire R L, de Moraes E P, Mota R A (2013). Experimental vaginal infection of goats with semen contaminated with the “CPG” strain of Toxoplasma gondii. J Parasitol, 99(4): 610–613

    PubMed  Google Scholar 

  • Webster J P (1994). The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology, 109(Pt 5): 583–589

    PubMed  Google Scholar 

  • Webster J P (2007). The effect of Toxoplasma gondii on animal behavior: playing cat and mouse. Schizophr Bull, 33(3): 752–756

    PubMed Central  PubMed  Google Scholar 

  • Webster J P, Kaushik M, Bristow G C, McConkey G A (2013). Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol, 216(Pt 1): 99–112

    PubMed Central  PubMed  Google Scholar 

  • West A R, Galloway M P, Grace A A (2002). Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse, 44(4): 227–245

    PubMed  CAS  Google Scholar 

  • Witting P A (1979). Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice. Z Parasitenkd, 61(1): 29–51

    PubMed  CAS  Google Scholar 

  • Worth A R, Lymbery A J, Thompson R C (2013). Adaptive host manipulation by Toxoplasma gondii: fact or fiction? Trends Parasitol, 29(4): 150–155

    PubMed  CAS  Google Scholar 

  • Xiao J, Buka S L, Cannon T D, Suzuki Y, Viscidi R P, Torrey E F, Yolken R H (2009). Serological pattern consistent with infection with type I Toxoplasma gondii in mothers and risk of psychosis among adult offspring. Microbes Infect, 11(13): 1011–1018

    PubMed  CAS  Google Scholar 

  • Xiao J, Jones-Brando L, Talbot C C Jr, Yolken R H (2011). Differential effects of three canonical Toxoplasma strains on gene expression in human neuroepithelial cells. Infect Immun, 79(3): 1363–1373

    PubMed Central  PubMed  CAS  Google Scholar 

  • Xiao J, Kannan G, Jones-Brando L, Brannock C, Krasnova I N, Cadet J L, Pletnikov M, Yolken R H (2012). Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience, 206: 39–48

    PubMed  CAS  Google Scholar 

  • Xiao J, Li Y, Jones-Brando L, Yolken R H (2013). Abnormalities of neurotransmitter and neuropeptide systems in human neuroepithelioma cells infected by three Toxoplasma strains. J Neural Transm, 120(12): 1631–1639

    PubMed  CAS  Google Scholar 

  • Zalcman S, Green-Johnson J M, Murray L, Nance D M, Dyck D, Anisman H, Greenberg A H (1994). Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and-6. Brain Res, 643(1–2): 40–49

    PubMed  CAS  Google Scholar 

  • Zghair KH, AL-Qadhi BN, Mahmood SH (2013). The effect of toxoplasmosis on the level of some sex hormones in males blood donors in Baghdad. J Parasit Dis. doi: 10.1007/s12639-013-0382-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abdoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdoli, A. Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection. Front. Biol. 9, 151–160 (2014). https://doi.org/10.1007/s11515-014-1291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1291-5

Keywords

Navigation