Skip to main content
Log in

Stigma factors regulating self-compatible pollination

  • Review
  • Published:
Frontiers in Biology

Abstract

Pollination is one of the most important steps during fertilization and sexual reproduction in plants, and numerous cell-cell interaction events occur between the pistil and the pollen grain/tube during this process. The pollen-stigma interaction is a highly selective process which leads to compatible or incompatible pollination. Previous studies in Solanaceae, Papaveraceae, and Brassicaceae provided some important insights into pollen-stigma recognition in self-incompatible systems. In recent years, considerable data have been available regarding pollen-stigma interaction during self-compatible pollination. In this review, we focus on discussing current knowledge on stigma factors that regulate pollen-stigma interaction in self-compatible systems in comparison with self-incompatible systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baluska F, Samaj J, Wojtaszek P, Volkmann D, Menzel D (2003). Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol, 133: 482–491

    Article  PubMed  CAS  Google Scholar 

  • Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B (2003). Arabidopsis genes involved in acyl lipid metabolism: A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol, 132, 681–697

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Cheung A Y, Hepler P K (2005). Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol, 138: 1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Busot G Y, McClure B, Ibarra-Sánchez C P, Jiménez-Durán K, Vázquez-Santana S, Cruz-García F (2008). Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue. J Exp Bot, 59: 3187–3201

    Article  PubMed  CAS  Google Scholar 

  • Chassot C, Nawrath C, Metraux J P (2007). Cuticular defects lead to full immunity to a major plant pathogen. Plant J, 49: 972–980

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D J (2000). Loosening of plant cell walls by expansins. Nature, 407: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D J, Bedinger P, Durachko D M (1997). Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci USA, 94: 6559–6564

    Article  PubMed  CAS  Google Scholar 

  • Cresti M, Keijzer C J, Tiezzi A, Ciampolini F, Focardi S (1986). Stigma of Nicotiana: ultrastructural and biochemical studies. Am J Bot, 73: 1713–1722

    Article  CAS  Google Scholar 

  • Dafni A, Maues M (1998). A rapid and simple procedure to determine stigma receptivity. Sexual Plant Rep, 11: 177–180

    Article  Google Scholar 

  • Dong X, Hong Z, Chatterjee J, Kim S, Verma D P (2008). Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta, 229: 87–98

    Article  PubMed  CAS  Google Scholar 

  • Elleman C J, Dickinson H G (1996). Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea. New Phytol, 133: 197–205

    Article  Google Scholar 

  • Elleman C J, Franklin-Tong V E, Dickinson H G (1992). Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol, 121: 413–424

    Article  Google Scholar 

  • Elleman C J, Willson C E, Sarker R H, Dickinson H G (1988). Interaction between the pollen tube and stigmatic cell wall following pollination in Brassica oleracea. New Phytol, 109: 111–117

    Article  Google Scholar 

  • Eyster K M (2007). The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv Physiol Educ, 31: 5–16

    Article  PubMed  Google Scholar 

  • Fiebig A, Mayfield J A, Miley N L, Chau S, Fischer R L, Preuss D (2000). Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell, 12: 2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Ge L L, Xie C T, Tian H Q, Russell S D (2009). Distribution of calcium in the stigma and style of tobacco during pollen germination and tube elongation. Sex Plant Reprod, 22: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Gebert M, Dresselhaus T, Sprunck S (2008). F-actin organization and pollen tube tip growth in Arabidopsis are dependent on the gametophyte-specific armadillo repeat protein ARO1. Plant Cell, 20: 2798–2814

    Article  PubMed  CAS  Google Scholar 

  • Goldman M H, Goldberg R B, Mariani C (1994). Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J, 13: 2976–2984

    PubMed  CAS  Google Scholar 

  • Gossot O, Geitmann A (2007). Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta, 226: 405–416

    Article  PubMed  CAS  Google Scholar 

  • de Graaf B H J, Knuiman B A, Derksen J, Mariani C (2003). Characterization and localization of the transmitting tissue-specific PELPIII proteins of Nicotiana tabacum. J Exp Bot, 54: 55–63

    Article  PubMed  Google Scholar 

  • Gu Y, Vernoud V, Fu Y, Yang Z (2003). ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot, 54: 93–101

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison Y (2000). Control gates and micro-ecology: the pollen-stigma interaction in perspective. Ann Bot, 85: 5–13

    Article  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998). Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell, 10: 2019–2031

    Article  PubMed  CAS  Google Scholar 

  • Hiscock S J, Allen A M(2008). Diverse cell signaling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol, 179: 286–317

    Article  PubMed  CAS  Google Scholar 

  • Hiscock S J, Bown D, Gurr S J, Dickinson H G (2002). Serine esterases are required for pollen tube penetration of the stigma in Brassica. Sex Plant Reprod, 15: 65–74

    Article  CAS  Google Scholar 

  • Hiscock S J, Coleman J, Dewey F M, Dickinson H G (1994). Identification and localization of an active cutinase in the pollen of Brassica napus L. Planta, 193: 377–384

    Article  CAS  Google Scholar 

  • Huang S, Blanchoin L, Chaudhry F, Franklin-Tong V E, Staiger C J (2004). A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem, 279: 23364–23375

    Article  PubMed  CAS  Google Scholar 

  • Humphrey T V, Bonetta D T, Goring D R (2008). Sentinels at the wall: cell wall receptors and sensors. New Phytol, 176: 7–21

    Article  CAS  Google Scholar 

  • Hussey P J, Ketelaar T, Deeks M J (2006). Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol, 57: 109–125

    Article  PubMed  CAS  Google Scholar 

  • Ivanov R, Gaude T (2009). Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. Plant Cell, 21: 2107–2117

    Article  PubMed  CAS  Google Scholar 

  • Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S (2007). Actin dynamics in papilla cells of Brassica rapa during self- and crosspollination. Plant Physiol, 144: 72–81

    Article  PubMed  CAS  Google Scholar 

  • Iwano M, Shiba H, Miwa T, Che F S, Takayama S, Nagai T, Miyawaki A, Isogai A (2004). Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol, 136: 3562–3571

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Yang S L, Xie L F, Puah C S, Zhang X Q, Yang W C, Sundaresan V, Ye D (2005). VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell, 17: 584–596

    Article  PubMed  CAS  Google Scholar 

  • Jump D B (2004). Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci, 41: 41–78

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy M K, Burgos-Rivera B, McKinney E C, Ruzicka D R, Meagher R B (2007). Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. Plant Cell, 19: 3111–3126

    Article  PubMed  CAS  Google Scholar 

  • Kim S T, Zhang K, Dong J, Lord E M (2006). Exogenous free ubiquitin enhances lily pollen tube adhesion to an in vitro stylar matrix and may facilitate endocytosis of SCA. Plant Physiol, 142: 1397–1411

    Article  PubMed  CAS  Google Scholar 

  • Kim H U, Chung T Y, Kang S K (1996). Characterization of antherspecific genes encoding a putative pectin esterase of Chinese cabbage. Mol Cells, 6: 334–340

    CAS  Google Scholar 

  • Knox R B, Clarke A E, Harrison S, Smith P, Marchalonis J J (1976). Cell recognition in plants: determinants of the stigma surface and their pollen interactions. Proc Natl Acad Sci USA, 73: 2788–2792

    Article  PubMed  CAS  Google Scholar 

  • Kostenis E (2004). A glance at G-protein-coupled receptors for lipid mediators: a growing receptor family with remarkably diverse ligands. Pharmacol Ther, 102: 243–257

    Article  PubMed  CAS  Google Scholar 

  • Kuboyama T (1998). A novel thaumatin-like protein gene of tobacco is specifically expressed in the transmitting tissue of stigma and style. Sex Plant Reprod, 11: 251–256

    Article  CAS  Google Scholar 

  • Kuboyama T, Yoshida K T, Takeda G (2001). Antiserum against a stigma-exudate protein of tobacco, SE32, which was identical with PPAL, a beta-expansin-like protein specific to stigma, cross-reacted with another stigma-exudate protein, SE35. Breed Sci, 51: 131–135

    Article  CAS  Google Scholar 

  • Lee C B, Kim S, McClure B (2009). A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. Plant Physiol, 149: 791–802

    Article  PubMed  CAS  Google Scholar 

  • Lenartowska M, Lenartowski R, Smoliński D J, Wróbel B, Niedojadło J, Jaworski K, Bednarska E (2009). Calreticulin expression and localization in plant cells during pollen-pistil interactions. Planta, 231(1): 67–77

    Article  PubMed  CAS  Google Scholar 

  • Li L C, Bedinger P A, Volk C, Jones A D, Cosgrove D J (2003). Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen. Plant Physiol, 132: 2073–2085

    Article  PubMed  CAS  Google Scholar 

  • Llop-Tous I, Barry C S, Grierson D (2000). Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol, 123: 971–978

    Article  PubMed  CAS  Google Scholar 

  • Mayfield J A, Fiebig A, Johnstone S E, Preuss D (2001). Gene families from the Arabidopsis thaliana pollen coat proteome. Science, 292: 2482–2485

    Article  PubMed  CAS  Google Scholar 

  • Mayfield J A, Preuss D (2000). Rapid initiation of Arabidopsis pollination requires the oleosin-domain protein GRP17. Nature Cell Biol, 2: 128–130

    Article  PubMed  CAS  Google Scholar 

  • McInnis S M, Desikan R, Hancock J T, Hiscock S J (2006). Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signaling crosstalk? New Phytol, 172: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Miller E A, Lee M C S, Atkinson A H O, Anderson M A (2000). Identification of a novel four-domain member of the proteinase inhibitor II family from the stigmas of Nicotiana alata. Plant Mol Biol, 42: 329–333

    Article  PubMed  CAS  Google Scholar 

  • Mol R, Filek M, Machackova I, Matthys-Rochon E (2004). Ethylene synthesis and auxin augmentation in pistil tissues are important for egg cell differentiation after pollination in maize. Plant Cell Physiol, 45: 1396–1405

    Article  PubMed  CAS  Google Scholar 

  • Moscatelli A, Idilli A I (2009). Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol, 51: 727–739

    Article  PubMed  CAS  Google Scholar 

  • Nieuwland J, Feron R, Huisman B A H, Fasolino A, Hilbers C W, Derksen J, Mariani C (2005). Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell, 17: 2009–2019

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Preuss D (2006). Distinct short-range ovule signals attract or repel Arabidopsis pollen tubes in vitro. BMC Plant Biol, 6: 7

    Article  PubMed  CAS  Google Scholar 

  • Park S Y, Lord E M (2003). Expression studies of SCA in lily and confirmation of its role in pollen tube adhesion. Plant Mol Biol, 51: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Pezzotti M, Feron R, Mariani C (2002). Pollination modulates expression of the PPAL gene, a pistil-specific β-expansin. Plant Mol Biol, 49: 187–197

    Article  PubMed  CAS  Google Scholar 

  • Prado A M, Colaco R, Moreno N, Silva A C, Feijo J A (2008). Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. Mol Plant, 1: 703–714

    Article  PubMed  CAS  Google Scholar 

  • Pruitt R E, Vielle-Calzada J P, Ploense S E, Grossniklaus U, Lolle S J (2000). FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA, 97: 1311–1316

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Leydon A R, Manziello A, Pandey R, Mount D, Denic S, Vasic B, Johnson M A, Palanivelu R (2009). Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genetics, 5: e1000621

    Article  PubMed  CAS  Google Scholar 

  • Quiapim A C, Brito M S, Bernardes L A, Dasilva I, Malavazi I, DePaoli H C, Molfetta-Machado J B, Giuliatti S, Goldman G H, Goldman M H (2009). Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol, 49: 1211–1230

    Article  CAS  Google Scholar 

  • Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004). Endocytosis, actin cytoskeleton, and signaling. Plant Physiol, 135: 1150–1161

    Article  PubMed  CAS  Google Scholar 

  • Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R (2009). Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 21: 2655–2671

    Article  PubMed  CAS  Google Scholar 

  • Sanchez A M, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004). Pistil factors controlling pollination. Plant Cell, 16: S98–S106

    Article  PubMed  CAS  Google Scholar 

  • Sedgley M (1979). Structural changes in the pollinated and unpollinated avocado stigma and style. J Cell Sci, 38: 49–60

    PubMed  CAS  Google Scholar 

  • Shi D Q, Yang W C (2009). Pollen germination and tube growth. In: Pua E C, Davey MR, eds. Plant Developmental Biology-Biotechnological Perspectives. Heidelberg: Springer Berlin Heidelberg

    Google Scholar 

  • Suen D F, Huang A H C (2007). Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction. J Boil Chem, 282: 625–636

    Article  CAS  Google Scholar 

  • Suen D F, Wu S SH, Chang H C, Dhugga K S, Huang A H C (2003). Cell wall reactive proteins in the coat and wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. J Biol Chem, 278: 43672–43681

    Article  PubMed  CAS  Google Scholar 

  • Swanson R, Edlund A F, Preuss D (2004). Species specificity in pollenpistil interactions. Annu Rev Genet, 38: 793–818

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol, 51: 123–131

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S (2004). LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. Plant J, 39: 343–353

    Article  PubMed  CAS  Google Scholar 

  • Tian G W, Chen M H, Zaltsman A, Citovsky V (2006). Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol, 294: 83–91

    Article  PubMed  CAS  Google Scholar 

  • Tung C-W, Dwyer K G, Nasrallah M E, Nasrallah J B (2005). Genomewide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol, 138: 977–989

    Article  PubMed  CAS  Google Scholar 

  • Updegraff E P, Zhao F, Preuss D (2009). The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. Sex Plant Reprod, 22: 197–204

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven T, Feron R, Wolters-Arts M, Edqvist J, Gerats T, Derksen J, Mariani C (2005). STIG1 controls exudate secretion in the pistil of petunia and tobacco. Plant Physiol, 138: 153–160

    Article  PubMed  CAS  Google Scholar 

  • Vidali L, Hepler P K (2001). Actin and pollen tube growth. Protoplasma, 215: 64–76

    Article  PubMed  CAS  Google Scholar 

  • Wakelin A M, Leung D W M (2009). β-1,3-Glucanase activity in the stigma of healthy petunia flowers. Biol Plantarum, 51: 69–74

    Article  CAS  Google Scholar 

  • Wolters-Arts M, Lush W M, Mariani C (1998). Lipids are required for directional pollen tube growth. Nature, 392: 318–321

    Article  Google Scholar 

  • Wolters-Arts M, van der Weerd L, van Aeist A C, van der Weerd J, van As H, Mariani C (2002). Water conducting properties of lipids during pollen hydration. Plant Cell Environ, 25: 513–519

    Article  CAS  Google Scholar 

  • Wu J Z, Lin Y, Zhang X L, Pang D W, Zhao J (2008). IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. J Exp Bot, 59: 2529–2543

    Article  PubMed  CAS  Google Scholar 

  • Wu Y Z, Qiu X, Du S, Erikson L (1996). PO149, a new member of the pectate lyase-like gene family in alfalfa. Plant Mol Biol, 32: 1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Yan A, Xu G, Yang Z B (2009). Calcium participates in feedback regulation of the oscillating ROP1 Rho GTPase in pollen tubes. Proc Natl Acad Sci USA, 106: 22002–22007

    Article  PubMed  Google Scholar 

  • Zárský V, Cvrcková F, Potocký M, Hála M (2009). Exocytosis and cell polarity in plants-exocyst and recycling domains. New Phytol, 183: 255–272

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Wengier D, Shuai B, Gui C P, Muschietti J, McCormick S, Tang W H (2008). The pollen receptor kinase LePRK2 mediates growthpromoting signals and positively regulates pollen germination and tube growth. Plant Physiol, 148: 1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Zhang X S, O’Neill S D (1993). Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell, 5: 403–418

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhao Z, Xue Y (2009). Roles of proteolysis in plant selfincompatibility. Annu Rev Plant Biol, 60: 21–42

    Article  PubMed  CAS  Google Scholar 

  • Zinkl G M, Preuss D (2000). Dissecting Arabidopsis pollen-stigma interactions reveals novel mechanisms that confer mating specificity. Ann Bot, 85(Suppl A): 15–21

    Article  Google Scholar 

  • Zinkl G M, Zwiebel B, Grier D G, Preuss D (1999). Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by hydrophobic molecules in the pollen exine. Development, 126: 5431–5440

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiansheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, XQ., Zhu, D. & Zhang, X. Stigma factors regulating self-compatible pollination. Front. Biol. 5, 156–163 (2010). https://doi.org/10.1007/s11515-010-0024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-010-0024-7

Keywords

Navigation