Skip to main content
Log in

Calculus of functors, operad formality, and rational homology of embedding spaces

  • Published:
Acta Mathematica

Abstract

Let M be a smooth manifold and V a Euclidean space. Let \( \overline{{{\text{Emb}}}} \)(M,V) be the homotopy fiber of the map Emb(M,V) → Imm(M,V). This paper is about the rational homology of \( \overline{{{\text{Emb}}}} \)(M,V). We study it by applying embedding calculus and orthogonal calculus to the bifunctor (M,V)↦ HQ\( \overline{{{\text{Emb}}}} \)(M,V)+. Our main theorem states that if

$$ \dim V \geqslant 2{\text{ED}}{\left( M \right)} + 1 $$

(where ED(M) is the embedding dimension of M), the Taylor tower in the sense of orthogonal calculus (henceforward called “the orthogonal tower”) of this functor splits as a product of its layers. Equivalently, the rational homology spectral sequence associated with the tower collapses at E 1. In the case of knot embeddings, this spectral sequence coincides with the Vassiliev spectral sequence. The main ingredients in the proof are embedding calculus and Kontsevich's theorem on the formality of the little balls operad. We write explicit formulas for the layers in the orthogonal tower of the functor

$$ HQ \wedge \overline{{{\text{Emb}}}} {\left( {M,V} \right)}_{ + }. $$

The formulas show, in particular, that the (rational) homotopy type of the layers of the orthogonal tower is determined by the (rational) homotopy type of M. This, together with our rational splitting theorem, implies that, under the above assumption on codimension, rational homology equivalences of manifolds induce isomorphisms between the rational homology groups of \( \overline{{{\text{Emb}}}} \)(–,V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arone, G., A note on the homology of ∑ n , the Schwartz genus, and solving polynomial equations, in An Alpine Anthology of Homotopy Theory, Contemp. Math., 399, pp. 1–10. Amer. Math. Soc., Providence, RI, 2006.

  2. — The derivatives of embedding functors I: The stable case. Preprint. arXiv:0707.3489.

  3. Arone, G., Lambrechts, P., Turchin, V. & Voliæ, I., Coformality and the rational homotopy groups of spaces of long knots. To appear in Math. Res. Lett. arXiv:math/0701350.

  4. Borceux, F., Handbook of Categorical Algebra. 2. Encyclopedia of Mathematics and its Applications, 51. Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  5. Ching, M., Bar constructions for topological operads and the Goodwillie derivatives of the identity. Geom. Topol., 9 (2005), 833–933.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen, F. R. & Taylor, L. R., On the representation theory associated to the cohomology of configuration spaces, in Algebraic Topology (Oaxtepec, 1991), Contemp. Math., 146, pp. 91–109. Amer. Math. Soc., Providence, RI, 1993.

  7. Deligne, P., Griffiths, P., Morgan, J. & Sullivan, D., Real homotopy theory of Kähler manifolds. Invent. Math., 29 (1975), 245–274.

    Article  MATH  MathSciNet  Google Scholar 

  8. Dwyer, W. G. & Spaliñski, J., Homotopy theories and model categories, in Handbook of Algebraic Topology, pp. 73–126. North-Holland, Amsterdam, 1995.

    Google Scholar 

  9. Goodwillie, T. G. & Klein, J. R., Excision statements for spaces of embeddings. In preparation.

  10. Goodwillie, T. G., Klein, J. R. & Weiss, M. S., Spaces of smooth embeddings, disjunction and surgery, in Surveys on Surgery Theory, Vol. 2, Ann. of Math. Stud., 149, pp. 221–284. Princeton University Press, Princeton, NJ, 2001.

    Google Scholar 

  11. Goodwillie, T. G. & Weiss, M., Embeddings from the point of view of immersion theory. II. Geom. Topol., 3 (1999), 103–118.

    Article  MATH  MathSciNet  Google Scholar 

  12. Guillén Santos, F., Navarro, V., Pascual, P. & Roig, A., Moduli spaces and formal operads. Duke Math. J., 129 (2005), 291–335.

    Article  MATH  MathSciNet  Google Scholar 

  13. Hirschhorn, P. S., Model Categories and Their Localizations. Mathematical Surveys and Monographs, 99. Amer. Math. Soc., Providence, RI, 2003.

  14. Kontsevich, M., Operads and motives in deformation quantization. Lett. Math. Phys., 48 (1999), 35–72.

    Article  MATH  MathSciNet  Google Scholar 

  15. Lambrechts, P., Turchin, V. & Voliæ, I., The rational homology of spaces of long knots in codimension >2. Preprint. arXiv:math/0703649.

  16. Lambrechts, P. & Voliæ, I., Formality of the little balls operad. In preparation.

  17. Orlik, P. & Terao, H., Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften, 300. Springer, Berlin–Heidelberg, 1992.

    Google Scholar 

  18. Schwede, S., Stable homotopical algebra and Γ-spaces. Math. Proc. Cambridge Philos. Soc., 126 (1999), 329–356.

    Article  MATH  MathSciNet  Google Scholar 

  19. Schwede, S. & Shipley, B., Equivalences of monoidal model categories. Algebr. Geom. Topol., 3 (2003), 287–334.

    Article  MATH  MathSciNet  Google Scholar 

  20. Sullivan, D., Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., (1977), 269–331.

  21. Weibel, C. A., An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  22. Weiss, M. S., Orthogonal calculus. Trans. Amer. Math. Soc., 347:10 (1995), 3743–3796.

    Article  MATH  MathSciNet  Google Scholar 

  23. — Embeddings from the point of view of immersion theory. I. Geom. Topol., 3 (1999), 67–101.

    Article  MATH  MathSciNet  Google Scholar 

  24. — Homology of spaces of smooth embeddings. Q. J. Math., 55 (2004), 499–504.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Arone.

Additional information

The first and third authors were supported by the National Science Foundation, grants DMS 0605073 and DMS 0504390, respectively. The second author is chercheur qualifié au F.N.R.S. and he gratefully acknowledges support by the Institut Mittag–Leffler (Djursholm, Sweden).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arone, G., Lambrechts, P. & Volić, I. Calculus of functors, operad formality, and rational homology of embedding spaces. Acta Math 199, 153–198 (2007). https://doi.org/10.1007/s11511-007-0019-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-007-0019-7

2000 Math. Subject Classification

Keywords

Navigation