Skip to main content
Log in

Derived string topology and the Eilenberg-Moore spectral sequence

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let M be a simply-connected closed manifold of dimension m. Chas and Sullivan have defined (co)products on the homology of the free loop space H*(LM). Félix and Thomas have extended the loop (co)products to those of simply-connected Gorenstein spaces over a field. We describe these loop (co)products in terms of the torsion and extension functors by developing string topology in appropriate derived categories.

In Algebraic Topology, one of the most important tools for computing the (co)homology of the space of free loops on a space is the (co)homological Eilenberg-Moore spectral sequence. Consider, over any field, the homological Eilenberg-Moore spectral sequence converging to H *(LM). Our description of the loop product enables one to conclude that this spectral sequence is multiplicative with respect to the Chas-Sullivan loop product and that its E 2-term is the Hochschild cohomology of H*(M). This gives a new method to compute the loop products on H *(LS m) and H *(LP r), the free loop space homology of spheres and complex projective spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Avramov and S. Iyengar, Gorenstein algebras and Hochschild cohomology, Michigan Mathematical Journal 57 (2008), 17–35.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Behrend, G. Ginot, B. Noohi and P. Xu, String topology for stacks Astérisque 343 (2012).

  3. G. Bredon, Topology and Geometry, Graduate Texts in Mathematics, Vol. 139, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  4. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.

    MATH  Google Scholar 

  5. M. Chas and D. Sullivan, String topology, preprint, math.GT/0107187.

  6. D. Chataur and J.-F. Le Borgne, Homology of spaces of regular loops in the sphere, Algebraic & Geometric Topology 9 (2009), 935–977.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Chataur and L. Menichi, String topology of classifying spaces, Journal für die Reine und Angewandte Mathematik 669 (2012), 1–45.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. L. Cohen, J. D. S. Jones and J. Yan, The loop homology algebra of spheres and projective spaces, in Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001), Progress in Mathematics, Vol. 215, Birkhäuser, Basel, 2004, pp. 77–92.

    Google Scholar 

  9. R. L. Cohen and V. Godin, A polarized view of string topology, in Topology, Geometry and Quantum Field Theory, London Mathematical Society Lecture Note Series, Vol. 308, Cambridge University Press, Cambridge, 2004, pp. 127–154.

    Chapter  Google Scholar 

  10. Y. Félix, S. Halperin and J.-C. Thomas, Gorenstein spaces, Advances in Mathematics 71 (1988), 92–112.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics, Vol. 205, Springer-Verlag, New York, 2001.

    MATH  Google Scholar 

  12. Y. Félix and J. -C. Thomas, String topology on Gorenstein spaces, Mathematische Annalen 345(2009), 417–452.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. Félix and J.-C. Thomas, Rational BV-algebra in string topology, Bulletin de la Société Mathématique de France 136 (2008), 311–327.

    MATH  Google Scholar 

  14. Y. Félix, J.-C. Thomas and M. Vigué-Poirrier, The Hochschild cohomology of a closed manifold Publications Mathématiques. Institut de Hautes Études Scientifiques 99 (2004), 235–252.

    Article  MATH  Google Scholar 

  15. G. Friedman, On the chain-level intersection pairing for PL pseudomanifolds, Homology, Homotopy and Applications 11 (2009), 261–314.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Gruher and P. Salvatore, Generalized string topology operations, Proceedings of the London Mathematical Society 96 (2008), 78–106.

    Article  MATH  MathSciNet  Google Scholar 

  17. V. K. A. M. Gugenheim and J. P. May, On the theory and applications of differential torsion products, Memoirs of the American Mathematical Society 142 1974.

  18. J. Klein, Fiber products, Poincaré duality and A -ring spectra, Proceedings of the American Mathematical Society 134 (2006), 1825–1833.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Kuribayashi, The Hochschild cohomology ring of the singular cochain algebra of a space, Université de Grenoble. Annales de l’Institut Fourier 61 (2011), 1779–1805.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Kuribayashi, L. Menichi and T. Naito, Behavior of the Eilenberg-Moore spectral sequence in derived string topology, Topology and its Applications 164 (2014), 24–44.

    Article  MATH  MathSciNet  Google Scholar 

  21. K. Kuribayashi and L. Menichi, On the loop (co)product on the classifying space of a Lie group, in preparation.

  22. K. Kuribayashi and L. Menichi, Loop products on Noetherian H-spaces, in preparation.

  23. P. Lambrechts and D. Stanley, Algebraic models of Poincaré embeddings, Algebraoc & Geometric Topology 5 (2005), 135–182.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Lambrechts and D. Stanley, Poincaré duality and commutative differential graded algebras, Annales Scientifiques de l’École Normale Supérieure 41 (2008), 495–509.

    MathSciNet  Google Scholar 

  25. J.-F. Le Borgne, The loop-product spectral sequence, Expositiones Mathematicae 26 (2008), 25–40.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Vol. 114, Academic Press, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

    Book  Google Scholar 

  27. J. McCleary, A User’s Guide to Spectral Sequences, Second edition, Cambridge Studies in Advanced Mathematics, Vol. 58, Cambridge University Press, 2001.

  28. J. McClure, On the chain-level intersection pairing for PL manifolds, Geometry & Topology 10 (2006), 1391–1424.

    Article  MATH  MathSciNet  Google Scholar 

  29. L. Meier, Spectral sequences in string topology, Algebraic & Geometric Topology 11 (2011), 2829–2860.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Menichi, Batalin-Vilkovisky algebra structures on Hochschild cohomology, Bulletin de la Société Mathématique de France 137 (2009), 277–295.

    MATH  MathSciNet  Google Scholar 

  31. L. Menichi, Van Den Bergh isomorphism in string topology, Journal of Noncommutative Geometry 5 (2011), 69–105.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. A. Merkulov, De Rham model for string topology, International Mathematics Research Notices 55 (2004), 2955–2981.

    Article  MathSciNet  Google Scholar 

  33. A. Murillo, The virtual Spivak fiber, duality on fibrations and Gorenstein spaces, Transactions of the American Mathematical Society 359 (2007), 3577–3587.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Naito, On the mapping space homotopy groups and the free loop space homology groups, Algebraic & Geometric Topology 11 (2011), 2369–2390.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Shamir, A spectral sequence for the Hochschild cohomology of a coconnective dga, Mathematica Scandinavica 112 (2013), 182–215.

    MATH  MathSciNet  Google Scholar 

  36. S. Siegel and S. Witherspoon, the Hochschild cohomology ring of a group algebra, Proceedings of the London Mathematical Society 79 (1999), 131–157.

    Article  MATH  MathSciNet  Google Scholar 

  37. E. H. Spanier, Algebraic Topology, Corrected reprint, Springer-Verlag, New York-Berlin, 1981.

    Book  Google Scholar 

  38. M. E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series, W. A.’Benjamin, New York, 1969.

    Google Scholar 

  39. H. Tamanoi, Cap products in string topology, Algebraic & Geometric Topology 9 (2009), 1201–1224.

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Tamanoi, Stable string operations are trivial, International Mathematics Research Notices 24 (2009), 4642–4685.

    MathSciNet  Google Scholar 

  41. H. Tamanoi, Loop coproducts in string topology and triviality of higher genus TQFT operations, Journal of Pure and Applied Algebra 214 (2010), 605–615.

    Article  MATH  MathSciNet  Google Scholar 

  42. D. Tanré, Homotopie rationnelle: mod`eles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, Vol. 1025, Springer-Verlag, Berlin, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Kuribayashi.

Additional information

The first author was partially supported by a Grant-in-Aid for Scientific Research (B) 25287008 from Japan Society for the Promotion of Science.

The third author was supported by JSPS Fellowships for Young Scientists No. 24-10827.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuribayashi, K., Menichi, L. & Naito, T. Derived string topology and the Eilenberg-Moore spectral sequence. Isr. J. Math. 209, 745–802 (2015). https://doi.org/10.1007/s11856-015-1236-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1236-y

Keywords

Navigation