Skip to main content
Log in

Effects of Oil Type on Sterol-Based Organogels and Emulsions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The present study investigates the effect of oil type on the formation, morphology and mechanical properties of phytosterol-based organogels. The formation of organogels can be satisfactorily predicted with a criterion based on Hansen Solubility Parameters (HSPs), provided that the sterol and sterol ester in these systems assemble as tubules. When structures other than tubules are formed, the predictability of the HSP-based criterion becomes void. In cases where organogelling occurred, the morphology and mechanical properties of the tubular network of the gels and water-in-oil emulsions were investigated. The findings revealed that the structure of the tubular network formed in oils with different compositions, could be grouped based on the dielectric constants of the oils. Curly and bundled tubules which formed networks, were observed in gels prepared with low dielectric constant oils (i.e. decane and limonene). For oils with a moderate dielectric constant (i.e. castor oil and sunflower oil), the tubules became less curly and straighter. Upon increasing the dielectric constant of the oil (eugenol), individual tubules were observed next to the bundled tubules. The results showed that straighter, bundled tubules are associated with firmer gels, whereas less straight (i.e. curly) tubules rendered weaker gels. The tubular network of the water-in-oil emulsions obtained for oils with a low dielectric constant appeared more open with straighter tubules. For oils with relatively high dielectric constant, the water-in-oil emulsions lost most of their tubular structure and only a few tubules could be observed. In the presence of emulsion droplets fewer tubules are formed, resulting in weaker networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.B. Katan, S.M. Grundy, P. Jones, M. Law, T. Miettinen, R. Paoletti, Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin. Proc. 78(8), 965–978 (2003)

    Article  CAS  Google Scholar 

  2. A. Matheson, G. Dalkas, P.S. Clegg, S.R. Euston, Phytosterol-based edible oleogels: A novel way of replacing saturated fat in food. Nutr. Bull. 43(2), 189–194 (2018)

    Article  CAS  Google Scholar 

  3. A. Bot, Phytosterols. In: Encyclopedia of Food Chemistry, Reference Module in Foods Science (Elsevier, 2018), pp. 225–228

  4. M. Pernetti, K.F. van Malssen, E. Flöter, A. Bot, Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 12(4-5), 221–231 (2007)

    Article  CAS  Google Scholar 

  5. A. G. Marangoni, N. Garti (eds.), Edible Oleogels: Structure and Health Implications (Elsevier/Academic Press, London, 2018)

    Google Scholar 

  6. A.R. Patel (Ed). Edible Oil Structuring: Concepts, Methods and Applications. (Royal Society of Chemistry, 2018)

  7. S. Calligaris, G. Mirolo, S. Da Pieve, G. Arrighetti, M.C. Nicoli, Effect of oil type on formation, structure and thermal properties of γ-oryzanol and β-sitosterol-based organogels. Food Biophysics 9(1), 69–75 (2014)

    Article  Google Scholar 

  8. M.A. Rogers, Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge: A review. Food Res. Int. 42(7), 747–753 (2009)

    Article  CAS  Google Scholar 

  9. G. Dalkas, A.B. Matheson, H. Vass, A. Gromov, G.O. Lloyd, V. Koutsos, P.S. Clegg, S.R. Euston, Molecular interactions behind the self-assembly and microstructure of mixed sterol organogels. Langmuir 34(29), 8629–8638 (2018)

    Article  CAS  Google Scholar 

  10. A. Bot, E.P. Gilbert, W.G. Bouwman, H. Sawalha, R. den Adel, V.M. Garamus, P. Venema, E. van der Linden, E. Flöter, Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering. Faraday Discuss. 158, 223–238 (2012)

    Article  CAS  Google Scholar 

  11. A.B. Matheson, V. Koutsos, G. Dalkas, S.R. Euston, P.S. Clegg, Microstructure of β-sitosterol:γ-oryzanol edible organogels. Langmuir 33(18), 4537–4542 (2017)

    Article  CAS  Google Scholar 

  12. A. Bot, R. den Adel, E.C. Roijers, Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. Journal American Oil Chemist Society 85(12), 1127–1134 (2008)

    Article  CAS  Google Scholar 

  13. A. Bot, R. den Adel, C. Regkos, H. Sawalha, P. Venema, E. Flöter, Structuring in β-sitosterol + γ-oryzanol-based emulsion gels during various stages of a temperature cycle. Food Hydrocoll. 25(4), 639–646 (2011)

    Article  CAS  Google Scholar 

  14. H. Sawalha, R. den Adel, P. Venema, A. Bot, E. Flöter, E. van der Linden, Organogel-emulsions with mixtures of β-sitosterol and γ-oryzanol: Influence of water activity and type of oil phase on gelling capability. J. Agric. Food Chem. 60(13), 3462–3470 (2012)

    Article  CAS  Google Scholar 

  15. T. Moschakis, E. Panagiotopoulou, E. Katsanidis, Sunflower oil organogels and organogel-in-water emulsions (part I): Microstructure and mechanical properties. LWT 73, 153–161 (2016)

    Article  CAS  Google Scholar 

  16. R. den Adel, P.C. Heussen, A. Bot, Effect of water on self-assembled tubules in β-sitosterol+ γ-oryzanol-based organogels. J. Phys. Conf. Ser. 274, 012025 (2010)

    Article  Google Scholar 

  17. A. Matheson, G. Dalkas, R. Mears, S.R. Euston, P.S. Clegg, Stable emulsions of droplets in a solid edible organogel matrix. Soft Matter 14(11), 2044–2051 (2018)

    Article  CAS  Google Scholar 

  18. Y. Lan, M.G. Corradini, X. Liu, T.E. May, F. Borondics, R.G. Weiss, M.A. Rogers, Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator. Langmuir 30(47), 14128–14142 (2014)

    Article  CAS  Google Scholar 

  19. M. Scharfe, Y. Ahmane, J. Seilert, J. Keim, E. Flöter, On the effect of minor oil components on β-sitosterol/γ-oryzanol oleogels. Eur. J. Lipid Sci. Technol. 121(8), 1800487 (2019)

    Article  Google Scholar 

  20. H. Sawalha, G. Margry, R. den Adel, P. Venema, A. Bot, E. Flöter, E. van der Linden, The influence of the type of oil phase on the self-assembly process of γ-oryzanol + β-sitosterol tubules in organogel systems. Eur. J. Lipid Sci. Technol. 115(3), 295–300 (2013)

    Article  CAS  Google Scholar 

  21. H. Sawalha, P. Venema, A. Bot, E. Flöter, E. van der Linden, The influence of concentration and temperature on the formation of γ-oryzanol + β-sitosterol tubules in edible oil organogels. Food Biophysics 6(1), 20–25 (2011)

    Article  Google Scholar 

  22. Y. Lan, M.G. Corradini, M.A. Rogers, Do molecular gelators cluster in Hansen space? Cryst. Growth Des. 14(9), 4811–4818 (2014)

    Article  CAS  Google Scholar 

  23. M.A. Rogers, Hansen solubility parameters as a tool in the quest for new edible oleogels. Journal American Oil Chemist Society 95(4), 393–405 (2018)

    Article  CAS  Google Scholar 

  24. H. Sawalha, P. Venema, A. Bot, E. Flöter, R. den Adel, E. van der Linden, The phase behavior of γ-oryzanol and β-sitosterol in edible oil. Journal American Oil Chemist Society 92(11-12), 1651–1659 (2015)

    Article  CAS  Google Scholar 

  25. A. Bot, W.G.M. Agterof, Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. Journal American Oil Chemist Society 83(6), 513–521 (2006)

    Article  CAS  Google Scholar 

  26. T. Narayanan, O. Diat, P. Bösecke, SAXS and USAXS on the high brilliance beamline at the ESRF. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467–468 Part 2, 1005–1009 (2001)

  27. R.G. Weiss, The past, present, and future of molecular gels. What is the status of the field, and where is it going? Journal of the American Chemical Society 136, 7519–7530 (2014)

  28. C.M. Hansen, Hansen Solubility Parameters: A users’s Handbook, second edn. (CRC Press, Boca Raton, 2007)

  29. S. Abbott, C. Hansen, Hansen Solubility Parameters (HSP) Application Notes: Hansen Solubility Parameters in practice, Hansen-Solubility.com (2013)

  30. H. Ritter, R.L. van de Sande, V. Muller, Liquid fatty component containing composition. Patent application WO 97(42830) (1997)

  31. A. Bot, R. den Adel, E.C. Roijers, C. Regkos, Effect of sterol type on structure of tubules in sterol + γ-oryzanol-based organogels. Food Biophysics 4(4), 266–272 (2009)

    Article  Google Scholar 

  32. Y. Lan, M.A. Rogers, 12-Hydroxystearic acid SAFiNs in aliphatic diols–a molecular oddity. CrystEngComm 17(42), 8031–8038 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this paper is financially supported by Food and Nutrition Delta. The authors thank Ruud den Adel for performing a measurement on the ID02 beamline in Grenoble, and T. Narayanan and M. Sztucki (European Synchrotron Radiation Facility) for support during these measurements. The authors also thank Adriaan Van Aelst, Wageningen University for preparing the SEM images. Claudine Diedericks is thanked for detailed feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Sawalha.

Ethics declarations

Declaration

The authors have no conflict of interest to declare concerning the present manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawalha, H., Venema, P., Bot, A. et al. Effects of Oil Type on Sterol-Based Organogels and Emulsions. Food Biophysics 16, 109–118 (2021). https://doi.org/10.1007/s11483-020-09654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09654-8

Keywords

Navigation