Skip to main content

Oleogels Produced by Direct Methods Using as Gelator: Fatty Acids (Including 12-HSA), Fatty Alcohols, Ceramides, Lecithins, Sterols, Cellulose Fibers, and Fumed Silica

  • Chapter
  • First Online:
Advances in Oleogel Development, Characterization, and Nutritional Aspects
  • 183 Accesses

Abstract

Oleogels offer a possibility to replace conventional saturated fats with a healthier alternative by entrapping liquid edible oils in a 3D-network provided by an oleogelator, which are the central molecules or materials to enable oleogelation. Fatty acids (including 12-HSA), fatty alcohols, ceramides, lecithins, sterols, cellulose fibers, and fumed silica are intensively studied as structuring agents. In the present work, the molecular characters, gelling capacities, structuring feasibility, and oleogelation mechanisms dedicated by individual oleogelators are extensively summarized and discussed. The thermal and macroscopic properties (i.e., rheological behavior, oil binding capacity, storage stability, and so on) of these gelator-structured oleogels and their potential applications in food and cosmetic sectors are highlighted. The overall aim of this chapter is to present a concise account of state-of-the art oleogelators based on an overview of the current literature in this field, concluding with some future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

12-HSA:

12-hydroxystearic acid

FDA:

Food and Drug Administration

GRAS:

Generally Recognized as Safe

LDL:

Low-density lipoprotein

LMWO:

Low molecular weight oleogelators

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PO:

Polymeric oleogelators

PS:

Phosphatidylserine

WHO:

World Health Organization

References

  1. Okuro PK, Tavernier I, Bin Sintang MD et al (2018) Synergistic interactions between lecithin and fruit wax in oleogel formation [J]. Food Funct 9(3):1755–1767

    Article  CAS  PubMed  Google Scholar 

  2. Patel AR, Nicholson RA, Marangoni AG (2020) Applications of fat mimetics for the replacement of saturated and hydrogenated fat in food products [J]. Curr Opin Food Sci 33:61–68

    Article  Google Scholar 

  3. Teegala SM, Willett WC, Mozaffarian D (2009) Consumption and health effects of trans fatty acids: a review [J]. J AOAC Int 92(5):1250–1257

    Article  CAS  PubMed  Google Scholar 

  4. Restrepo BJ, Rieger M (2016) Trans fat and cardiovascular disease mortality: evidence from bans in restaurants in New York [J]. J Health Econ 45:176–196

    Article  PubMed  Google Scholar 

  5. Siri-Tarino PW, Sun Q, Hu FB et al (2010) Saturated fat, carbohydrate, and cardiovascular disease [J]. Am J Clin Nutr 91(3):502–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghebreyesus TA, Frieden TR (2018) Replace: a roadmap to make the world trans fat free by 2023 [J]. Lancet 391(10134):1978–1980

    Article  PubMed  Google Scholar 

  7. De la Peña-Gil A, Álvarez-Mitre FM, González-Chávez MM et al (2017) Combined effect of shearing and cooling rate on the rheology of organogels developed by selected gelators [J]. Food Res Int 93:52–65

    Article  PubMed  Google Scholar 

  8. Patel AR, Rajarethinem PS, Gredowska A et al (2014) Edible applications of shellac oleogels: spreads, chocolate paste and cakes [J]. Food Funct 5(4):645–652

    Article  CAS  PubMed  Google Scholar 

  9. Li L, Liu G, Lin Y (2021) Physical and bloom stability of low-saturation chocolates with oleogels based on different gelation mechanisms [J]. LWT 140:110807

    Article  CAS  Google Scholar 

  10. Stortz TA, Marangoni AG (2013) Ethylcellulose solvent substitution method of preparing heat resistant chocolate [J]. Food Res Int 51(2):797–803

    Article  CAS  Google Scholar 

  11. Toro-Vazquez JF, Morales-Rueda J, Torres-Martínez A et al (2013) Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (r)-12-hydroxystearic acid in vegetable oil [J]. Langmuir 29(25):7642–7654

    Article  CAS  PubMed  Google Scholar 

  12. Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels [J]. Chem Rev 97(8):3133–3160

    Article  CAS  PubMed  Google Scholar 

  13. Li L, Liu G, Bogojevic O et al (2022) Edible oleogels as solid fat alternatives: composition and oleogelation mechanism implications [J]. Compr Rev Food Sci Food Saf 21(3):2077–2104

    Article  PubMed  Google Scholar 

  14. Patel AR, Dewettinck K (2016) Edible oil structuring: an overview and recent updates [J]. Food Funct 7(1):20–29

    Article  CAS  PubMed  Google Scholar 

  15. Gómez-Estaca J, Herrero AM, Herranz B et al (2019) Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development [J]. Food Hydrocoll 87:960–969

    Article  Google Scholar 

  16. Han L, Li L, Li B et al (2014) Structure and physical properties of organogels developed by sitosterol and lecithin with sunflower oil [J]. J Am Oil Chem Soc 91(10):1783–1792

    Article  CAS  Google Scholar 

  17. Shah DK, Sagiri SS, Behera B et al (2013) Development of olive oil based organogels using sorbitan monopalmitate and sorbitan monostearate: a comparative study [J]. J Appl Polym Sci 129(2):793–805

    Article  CAS  Google Scholar 

  18. Wright AJ, Marangoni AG (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels [J]. J Am Oil Chem Soc 83(6):497–503

    Article  CAS  Google Scholar 

  19. Rogers MA (2018) 12-hydroxystearic acid oleogels [M]. In: Edible oleogels. AOCS Press, London 85–102

    Google Scholar 

  20. Gravelle AJ, Davidovich-Pinhas M, Zetzl AK et al (2016) Influence of solvent quality on the mechanical strength of ethylcellulose oleogels [J]. Carbohydr Polym 135:169–179

    Article  CAS  PubMed  Google Scholar 

  21. Meng Z, Qi K, Guo Y et al (2018) Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose [J]. Food Chem 246:137–149

    Article  CAS  PubMed  Google Scholar 

  22. Patel AR, Rajarethinem PS, Cludts N et al (2015) Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates [J]. Langmuir 31(7):2065–2073

    Article  CAS  PubMed  Google Scholar 

  23. Tavernier I, Patel AR, Van der Meeren P et al (2017) Emulsion-templated liquid oil structuring with soy protein and soy protein: Κ-carrageenan complexes [J]. Food Hydrocoll 65:107–120

    Article  CAS  Google Scholar 

  24. Chen X-W, Yang X-Q (2019) Characterization of orange oil powders and oleogels fabricated from emulsion templates stabilized solely by a natural triterpene saponin [J]. J Agric Food Chem 67(9):2637–2646

    Article  CAS  PubMed  Google Scholar 

  25. Silva PM, Cerqueira MA, Martins AJ et al (2022) Oleogels and bigels as alternatives to saturated fats: a review on their application by the food industry [J]. J Am Oil Chem Soc 99(11):911–923

    Article  CAS  Google Scholar 

  26. Jiang Z, Lu X, Geng S et al (2020) Structuring of sunflower oil by stearic acid derivatives: experimental and molecular modelling studies [J]. Food Chem 324:126801

    Article  CAS  PubMed  Google Scholar 

  27. Blach C, Gravelle AJ, Peyronel F et al (2016) Revisiting the crystallization behavior of stearyl alcohol : stearic acid (so : Sa) mixtures in edible oil [J]. RSC Adv 6(84):81151–81163

    Article  CAS  Google Scholar 

  28. Bot A, Agterof WGM (2006) Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols [J]. J Am Oil Chem Soc 83(6):513–521

    Article  CAS  Google Scholar 

  29. Bin Sintang MD, Danthine S, Patel AR et al (2017) Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring [J]. J Colloid Interface Sci 504:387–396

    Article  CAS  PubMed  Google Scholar 

  30. Whitby CP (2020) Structuring edible oils with fumed silica particles [J]. Front Sustainable Food Syst 4:585160

    Article  Google Scholar 

  31. Whitby CP, Krebsz M, Booty SJ (2018) Understanding the role of hydrogen bonding in the aggregation of fumed silica particles in triglyceride solvents [J]. J Colloid Interface Sci 527:1–9

    Article  CAS  PubMed  Google Scholar 

  32. Bot A, Flöter E (2018) Structuring edible oil phases with fatty acids and alcohols [J]. In: Edible oil structuring: concepts methods and applications, AOCS press, Urbana 95–105

    Google Scholar 

  33. Gandolfo FG, Bot A, Flöter E (2004) Structuring of edible oils by long-chain fa, fatty alcohols, and their mixtures [J]. J Am Oil Chem Soc 81(1):1–6

    Article  CAS  Google Scholar 

  34. Daniel J, Rajasekharan R (2003) Organogelation of plant oils and hydrocarbons by long-chain saturated fa, fatty alcohols, wax esters, and dicarboxylic acids [J]. J Am Oil Chem Soc 80(5):417–421

    Article  CAS  Google Scholar 

  35. Valoppi F, Calligaris S, Marangoni AG (2017) Structure and physical properties of oleogels containing peanut oil and saturated fatty alcohols [J]. Eur J Lipid Sci Technol 119(5):1600252

    Article  Google Scholar 

  36. Hunter JE, Zhang J, Kris-Etherton PM (2010) Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review [J]. Am J Clin Nutr 91(1):46–63

    Article  CAS  PubMed  Google Scholar 

  37. Hu F-Q, Zhao M-D, Yuan H et al (2006) A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: properties and in vitro transfection studies [J]. Int J Pharm 315(1–2):158–166

    Article  CAS  PubMed  Google Scholar 

  38. Sagiri SS, Singh VK, Pal K et al (2015) Stearic acid based oleogels: a study on the molecular, thermal and mechanical properties [J]. Mater Sci Eng C Mater Biol Appl 48:688–699

    Article  CAS  PubMed  Google Scholar 

  39. Weiss R.G., Terech P. Molecular gels [J]. Materials with self-assembled fibrillar networks, 2006:

    Google Scholar 

  40. Şahan N, Paksoy H (2018) Developing microencapsulated 12-hydroxystearic acid (hsa) for phase change material use [J]. Int J Energy Res 42(10):3351–3360

    Article  Google Scholar 

  41. Fameau A-L, Rogers MA (2020) The curious case of 12-hydroxystearic acid — the dr. Jekyll & mr. Hyde of molecular gelators [J]. Curr Opin Colloid Interface Sci 45:68–82

    Article  CAS  Google Scholar 

  42. Alvarez-Mitre FM, Mallia VA, Weiss RG et al (2017) Self-assembly in vegetable oils of ionic gelators derived from (r)-12-hydroxystearic acid [J]. Food Struct 13:56–69

    Article  Google Scholar 

  43. Espinosa-Dzib A, Vyazovkin S (2021) Nanoconfined gelation in systems based on stearic and 12-hydroxystearic acids: a calorimetric study [J]. J Mol Liq 335:116191

    Article  CAS  Google Scholar 

  44. Mallia VA, George M, Blair DL et al (2009) Robust organogels from nitrogen-containing derivatives of (r)-12-hydroxystearic acid as gelators: comparisons with gels from stearic acid derivatives† [J]. Langmuir 25(15):8615–8625

    Article  CAS  PubMed  Google Scholar 

  45. Maskaev AK, Man’kovskaya NK, Lend’el IV et al (1971) Preparation of 12-hydroxystearic acid, the raw material for plastic greases [J]. Chem Technol Fuels Oils 7(2):109–112

    Article  Google Scholar 

  46. Fraser HM (1946) Production of lubricants, Google Patents

    Google Scholar 

  47. Elliger CA, Guadagni DG, Dunlap CE (1972) Thickening action of hydroxystearates in peanut butter [J]. J Am Oil Chem Soc 49(9):536–537

    Article  CAS  Google Scholar 

  48. Yang H-K, Zhang C, He X-N et al (2021) Effects of alkyl chain lengths on 12-hydroxystearic acid derivatives based supramolecular organogels [J]. Colloids Surf A Physicochem Eng Asp 616:126319

    Article  CAS  Google Scholar 

  49. Patel AR (2017) A colloidal gel perspective for understanding oleogelation [J]. Curr Opin Food Sci 15:1–7

    Article  Google Scholar 

  50. Li J-L, Liu X-Y (2010) Architecture of supramolecular soft functional materials: from understanding to micro-/nanoscale engineering [J]. Adv Funct Mater 20(19):3196–3216

    Article  CAS  Google Scholar 

  51. Rogers MA, Marangoni AG (2008) Non-isothermal nucleation and crystallization of 12-hydroxystearic acid in vegetable oils [J]. Cryst Growth Des 8(12):4596–4601

    Article  CAS  Google Scholar 

  52. Rogers MA, Wright AJ, Marangoni AG (2008) Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils [J]. Food Res Int 41(10):1026–1034

    Article  CAS  Google Scholar 

  53. Rogers MA, Wright AJ, Marangoni AG (2009) Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid / canola oil organogels [J]. Curr Opin Colloid Interface Sci 14(1):33–42

    Article  CAS  Google Scholar 

  54. Gao J, Wu S, Emge TJ et al (2013) Nanoscale and microscale structural changes alter the critical gelator concentration of self-assembled fibrillar networks [J]. CrystEngComm 15(22):4507–4515

    Article  CAS  Google Scholar 

  55. Tantishaiyakul V, Ouiyangkul P, Wajasat M et al (2018) A supramolecular gel based on 12-hydroxystearic acid/virgin coconut oil for injectable drug delivery [J]. Eur J Lipid Sci Technol 120(10):1800178

    Article  Google Scholar 

  56. Esposito CL, Tardif V, Sarrazin M et al (2020) Preparation and characterization of 12-hsa-based organogels as injectable implants for the controlled delivery of hydrophilic and lipophilic therapeutic agents [J]. Mater Sci Eng C 114:110999

    Article  CAS  Google Scholar 

  57. Agogué M.C., Loisel C., Gonçalves O., et al. (2022) Multi-scale study of the structuration of candle blends with a high content of vegetable fats to replace paraffins: effect of 12-hydroxystearic acid content [J]. J Am Oil Chem Soc n/a(n/a) 99(12):1137–1150

    Google Scholar 

  58. Marangoni AG, Garti N (2018) Edible oleogels: structure and health implications [M]. Elsevier, AOCS, Urbana

    Google Scholar 

  59. Wang FC, Gravelle AJ, Blake AI et al (2016) Novel trans fat replacement strategies [J]. Curr Opin Food Sci 7:27–34

    Article  Google Scholar 

  60. Lupi FR, Gabriele D, Baldino N et al (2013) Olive oil/policosanol organogels for nutraceutical and drug delivery purposes [J]. Food Funct 4(10):1512–1520

    Article  CAS  PubMed  Google Scholar 

  61. Xu Z, Fitz E, Riediger N et al (2007) Dietary octacosanol reduces plasma triacylglycerol levels but not atherogenesis in apolipoprotein e–knockout mice [J]. Nutr Res 27(4):212–217

    Article  CAS  Google Scholar 

  62. Pernetti M, van Malssen KF, Flöter E et al (2007) Structuring of edible oils by alternatives to crystalline fat [J]. Curr Opin Colloid Interface Sci 12(4–5):221–231

    Article  CAS  Google Scholar 

  63. Callau M, Sow-Kébé K, Jenkins N et al (2020) Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels [J]. Food Chem 333:127403

    Article  CAS  PubMed  Google Scholar 

  64. Zhoh C-K, Lee K-Y, Kim D-N (2009) The influences of fatty alcohol and fatty acid on rheological properties of o/w emulsion [J]. J Soc Cosmet Sci Korea 35(2):103–110

    Google Scholar 

  65. Schaink HM, van Malssen KF, Morgado-Alves S et al (2007) Crystal network for edible oil organogels: possibilities and limitations of the fatty acid and fatty alcohol systems [J]. Food Res Int 40(9):1185–1193

    Article  CAS  Google Scholar 

  66. Gravelle AJ, Marangoni AG (2018) Chapter 8: Vegetable oil oleogels structured using mixtures of stearyl alcohol and stearic acid (so:Sa) [M]. In: Marangoni AG, Garti N (eds) Edible oleogels, second edn. AOCS Press, Urbana, 193–217

    Google Scholar 

  67. Callau M, Sow-Kébé K, Nicolas-Morgantini L et al (2020) Effect of the ratio between behenyl alcohol and behenic acid on the oleogel properties [J]. J Colloid Interface Sci 560:874–884

    Article  CAS  PubMed  Google Scholar 

  68. Gravelle AJ, Davidovich-Pinhas M, Barbut S et al (2017) Influencing the crystallization behavior of binary mixtures of stearyl alcohol and stearic acid (sosa) using ethylcellulose [J]. Food Res Int 91:1–10

    Article  CAS  PubMed  Google Scholar 

  69. Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment [J]. Nat Rev Cancer 4(8):604–616

    Article  CAS  PubMed  Google Scholar 

  70. Singh A, Auzanneau FI, Rogers MA (2017) Advances in edible oleogel technologies - a decade in review [J]. Food Res Int 97:307–317

    Article  CAS  PubMed  Google Scholar 

  71. Imokawa G, Abe A, Jin K et al (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? [J]. J Investig Dermatol 96(4):523–526

    Article  CAS  PubMed  Google Scholar 

  72. Tessema EN, Gebre-Mariam T, Neubert RHH et al (2017) Potential applications of phyto-derived ceramides in improving epidermal barrier function [J]. Skin Pharmacol Physiol 30(3):115–138

    Article  CAS  PubMed  Google Scholar 

  73. Bouwstra JA, Honeywell-Nguyen PL (2002) Skin structure and mode of action of vesicles [J]. Adv Drug Deliv Rev 54:S41–S55

    Article  CAS  PubMed  Google Scholar 

  74. Masukawa Y, Narita H, Shimizu E et al (2008) Characterization of overall ceramide species in human stratum corneum [J]. J Lipid Res 49(7):1466–1476

    Article  CAS  PubMed  Google Scholar 

  75. Chemin C, Péan J-M, Bourgaux C et al (2009) Supramolecular organization of s12363-liposomes prepared with two different remote loading processes [J]. Biochim Biophys Acta Biomembr 1788(5):926–935

    Article  CAS  Google Scholar 

  76. Yilmaz E, Borchert H-H (2005) Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides [J]. Eur J Pharm Biopharm 60(1):91–98

    Article  CAS  PubMed  Google Scholar 

  77. Rogers MA, Wright AJ, Marangoni AG (2009) Oil organogels: the fat of the future? [J]. Soft Matter 5(8):1594–1596

    Article  CAS  Google Scholar 

  78. Rogers MA, Spagnuolo PA, Wang T-M et al (2017) A potential bioactive hard-stock fat replacer comprised of a molecular gel [J]. Food Sci Nutr 5(3):579–587

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J., Dong L., Zheng Q., et al. Surfactant-free oleogel-based emulsion stabilized by co-assembled ceramide/lecithin crystals with controlled digestibility [J]. J Sci Food Agric, 2022, n/a(n/a):

    Google Scholar 

  80. Wang TM, Rogers MA (2015) Biomimicry–an approach to engineering oils into solid fat s [J]. Lipid Technol 27(8):175–178

    Article  CAS  Google Scholar 

  81. Guo S, Song M, Gao X et al (2020) Assembly pattern of multicomponent supramolecular oleogel composed of ceramide and lecithin in sunflower oil: self-assembly or self-sorting? [J]. Food Funct 11(9):7651–7660

    Article  CAS  PubMed  Google Scholar 

  82. Liao Z, Guo S, Lu M et al (2022) Tailoring water-induced multi-component (ceramide and lecithin) oleogels: influence of solute added in water [J]. Food Biophys 17(1):84–92

    Article  Google Scholar 

  83. Hu B, Zheng Q, Weng Z et al (2022) Non-isothermal crystallization kinetics study of multi-component oleogels [J]. Food Chem 389:133123

    Article  CAS  PubMed  Google Scholar 

  84. Dowhan W, Bogdanov M, Mileykovskaya E (2008) Chapter 1: Functional roles of lipids in membranes [M]. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes, Fifth edn. Elsevier, San Diego, pp 1–37

    Google Scholar 

  85. Robert C, Couëdelo L, Vaysse C et al (2020) Vegetable lecithins: a review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention [J]. Biochimie 169:121–132

    Article  CAS  PubMed  Google Scholar 

  86. Gutiérrez-Méndez N, Chavez-Garay DR, Leal-Ramos MY (2022) Lecithins: a comprehensive review of their properties and their use in formulating microemulsions [J]. J Food Biochem 46(7):e14157

    Article  PubMed  Google Scholar 

  87. Spernath A, Aserin A, Garti N (2006) Fully dilutable microemulsions embedded with phospholipids and stabilized by short-chain organic acids and polyols [J]. J Colloid Interface Sci 299(2):900–909

    Article  CAS  PubMed  Google Scholar 

  88. List GR (2015) Chapter 1: Soybean lecithin: food, industrial uses, and other applications [M]. In: Ahmad MU, Xu X (eds) Polar lipids. Elsevier, Urbana, 1–33

    Google Scholar 

  89. Pernetti M, van Malssen K, Kalnin D et al (2007) Structuring edible oil with lecithin and sorbitan tri-stearate [J]. Food Hydrocoll 21(5–6):855–861

    Article  CAS  Google Scholar 

  90. Pan Y, Tikekar RV, Nitin N (2013) Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds [J]. Int J Pharm 450(1–2):129–137

    Article  CAS  PubMed  Google Scholar 

  91. Cobb M, Turkki P, Linscheer W et al (1980) Lecithin supplementation in healthy volunteers effect on cholesterol esterification and plasma, and bile lipids [J]. Ann Nutr Metab 24(4):228–237

    Article  CAS  Google Scholar 

  92. Okuro PK, Malfatti-Gasperini AA, Vicente AA et al (2018) Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases [J]. Food Res Int 111:168–177

    Article  CAS  PubMed  Google Scholar 

  93. Kumar R, Katare OP (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review [J]. AAPS PharmSciTech 6(2):E298–E310

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bodennec M, Guo Q, Rousseau D (2016) Molecular and microstructural characterization of lecithin-based oleogels made with vegetable oil [J]. RSC Adv 6(53):47373–47381

    Article  CAS  Google Scholar 

  95. Yadav I, Kasiviswanathan U, Soni C et al (2017) Stearic acid modified stearyl alcohol oleogel: analysis of the thermal, mechanical and drug release properties [J]. J Surfactant Deterg 20(4):851–861

    Article  CAS  Google Scholar 

  96. Bot A, den Adel R, Roijers EC (2008) Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels [J]. J Am Oil Chem Soc 85(12):1127–1134

    Article  CAS  Google Scholar 

  97. Nikiforidis CV, Scholten E (2014) Self-assemblies of lecithin and α-tocopherol as gelators of lipid material [J]. RSC Adv 4(5):2466–2473

    Article  CAS  Google Scholar 

  98. Han LJ, Li L, Zhao L et al (2013) Rheological properties of organogels developed by sitosterol and lecithin [J]. Food Res Int 53(1):42–48

    Article  CAS  Google Scholar 

  99. Okuro PK, Martins AJ, Vicente AA et al (2020) Perspective on oleogelator mixtures, structure design and behaviour towards digestibility of oleogels [J]. Curr Opin Food Sci 35:27–35

    Article  Google Scholar 

  100. Aguilar-Zárate M, De la Peña-Gil A, Álvarez-Mitre FM et al (2019) Vegetable and mineral oil organogels based on monoglyceride and lecithin mixtures [J]. Food Biophys 14(3):326–345

    Article  Google Scholar 

  101. Tamura T, Ichikawa M (1997) Effect of lecithin on organogel formation of 12-hydroxystearic acid [J]. J Am Oil Chem Soc 74(5):491–495

    Article  CAS  Google Scholar 

  102. Gaudino N, Ghazani SM, Clark S et al (2019) Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications [J]. Food Res Int 116:79–89

    Article  CAS  PubMed  Google Scholar 

  103. Aguilar-Zárate M, Macias-Rodriguez BA, Toro-Vazquez JF et al (2019) Engineering rheological properties of edible oleogels with ethylcellulose and lecithin [J]. Carbohydr Polym 205:98–105

    Article  PubMed  Google Scholar 

  104. Hu Z, He B, Ma L et al (2017) Recent advances in ergosterol biosynthesis and regulation mechanisms in saccharomyces cerevisiae [J]. Indian J Microbiol 57(3):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Du Y, Fu X, Chu Y et al (2022) Biosynthesis and the roles of plant sterols in development and stress responses [J]. Int J Mol Sci 23(4):2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weihrauch JL (1978) Sterol content of foods of plant origin [J]. J Am Diet Assoc 73(1):39–47

    Article  CAS  PubMed  Google Scholar 

  107. Gupta E (2020) Β-sitosterol: predominant phytosterol of therapeutic potential [M]. In: Mishra P, Mishra RR, Adetunji CO (eds) Innovations in food technology. Springer, Singapore, pp 465–477

    Chapter  Google Scholar 

  108. Pinto TC, Martins AJ, Pastrana L et al (2022) Water-in-oleogel emulsion based on γ-oryzanol and phytosterol mixtures: challenges and its potential use for the delivery of bioactives [J]. J Am Oil Chem Soc 99(11):1045–1053

    Article  CAS  Google Scholar 

  109. Martins AJ, Cerqueira MA, Pastrana LM et al (2019) Sterol-based oleogels’ characterization envisioning food applications [J]. J Sci Food Agric 99(7):3318–3325

    Article  CAS  PubMed  Google Scholar 

  110. Matheson AB, Koutsos V, Dalkas G et al (2017) Microstructure of β-sitosterol:Γ-oryzanol edible organogels [J]. Langmuir 33(18):4537–4542

    Article  CAS  PubMed  Google Scholar 

  111. Bot A, Adel RD, Roijers EC et al (2009) Effect of sterol type on structure of tubules in sterol + γ-oryzanol-based organogels [J]. Food Biophys 4(4):266–272

    Article  Google Scholar 

  112. Huang X, Raghavan SR, Terech P et al (2006) Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties [J]. J Am Chem Soc 128(47):15341–15352

    Article  CAS  PubMed  Google Scholar 

  113. Metin S, Hartel RW (1998) Thermal analysis of isothermal crystallization kinetics in blends of cocoa butter with milk fat or milk fat fractions [J]. J Am Oil Chem Soc 75(11):1617–1624

    Article  CAS  Google Scholar 

  114. Wright AJ, Hartel RW, Narine SS et al (2000) The effect of minor components on milk fat crystallization [J]. J Am Oil Chem Soc 77(5):463–475

    Article  CAS  Google Scholar 

  115. Sawalha H, Venema P, Bot A et al (2015) The phase behavior of γ-oryzanol and β-sitosterol in edible oil [J]. J Am Oil Chem Soc 92(11–12):1651–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alhasawi FM, Rogers M (2013) Ternary phase diagram of β-sitosterol–γ-oryzanol–canola oil [J]. J Am Oil Chem Soc 90(10):1533–1540

    Article  CAS  Google Scholar 

  117. Li L, Liu G (2019) Corn oil-based oleogels with different gelation mechanisms as novel cocoa butter alternatives in dark chocolate [J]. J Food Eng 263:114–122

    Article  CAS  Google Scholar 

  118. Qu K, Qiu H, Zhang H et al (2022) Characterization of physically stable oleogels transporting active substances rich in resveratrol [J]. Food Biosci 49:101830

    Article  CAS  Google Scholar 

  119. Li L, Wan W, Cheng W et al (2019) Oxidatively stable curcumin-loaded oleogels structured by β-sitosterol and lecithin: physical characteristics and release behaviour in vitro [J]. Int J Food Sci Technol 54(7):2502–2510

    Article  CAS  Google Scholar 

  120. Yuan T, Zeng J, Wang B et al (2021) Pickering emulsion stabilized by cellulosic fibers: morphological properties-interfacial stabilization-rheological behavior relationships [J]. Carbohydr Polym 269:118339

    Article  CAS  PubMed  Google Scholar 

  121. David A, David M, Lesniarek P et al (2021) Oleogelation of rapeseed oil with cellulose fibers as an innovative strategy for palm oil substitution in chocolate spreads [J]. J Food Eng 292:110315

    Article  CAS  Google Scholar 

  122. Patel A, Mankoč B, Sintang MB et al (2015) Fumed silica-based organogels and ‘aqueous-organic’ bigels [J]. RSC Adv 5(13):9703–9708

    Article  CAS  Google Scholar 

  123. Hurd AJ, Flower WL (1988) In situ growth and structure of fractal silica aggregates in a flame [J]. J Colloid Interface Sci 122(1):178–192

    Article  CAS  Google Scholar 

  124. Barthel H, Rösch L, Weis J (2005) Fumed silica - production, properties, and applications [M]. In: Organosilicon chemistry set, pp 761–778

    Chapter  Google Scholar 

  125. Tsantilis S, Pratsinis SE (2004) Soft- and hard-agglomerate aerosols made at high temperatures [J]. Langmuir 20(14):5933–5939

    Article  CAS  PubMed  Google Scholar 

  126. Ranka M, Varkey N, Ramakrishnan S et al (2015) Impact of small changes in particle surface chemistry for unentangled polymer nanocomposites [J]. Soft Matter 11(8):1634–1645

    Article  CAS  PubMed  Google Scholar 

  127. Hooper JB, Schweizer KS, Desai TG et al (2004) Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions [J]. J Chem Phys 121(14):6986–6997

    Article  CAS  PubMed  Google Scholar 

  128. Raghavan SR, Walls HJ, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding [J]. Langmuir 16(21):7920–7930

    Article  CAS  Google Scholar 

  129. Benitez R, Contreras S, Goldfarb J (1971) Dispersions of methylated silica in mixed solvents [J]. J Colloid Interface Sci 36(1):146–150

    Article  CAS  Google Scholar 

  130. Chauhan RR, Dullens RP, Velikov KP et al (2017) Exploring concentration, surface area and surface chemistry effects of colloidal aggregates on fat crystal networks [J]. RSC Adv 7(46):28780–28787

    Article  CAS  Google Scholar 

  131. Chauhan RR, Dullens RP, Velikov KP et al (2017) The effect of colloidal aggregates on fat crystal networks [J]. Food Funct 8(1):352–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by Danmarks Frie Forskningsfond | Teknologi og Produktion (0136-00206B), the Novo Nodisk Fonden (NNF16OC0021740), National Natural Science Fund of China [grant numbers: U21A20270, 31972002 and 31771895], Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Laboratory for Green Processing of Natural Products and Product Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Liu, G., Guo, Z. (2024). Oleogels Produced by Direct Methods Using as Gelator: Fatty Acids (Including 12-HSA), Fatty Alcohols, Ceramides, Lecithins, Sterols, Cellulose Fibers, and Fumed Silica. In: Palla, C., Valoppi, F. (eds) Advances in Oleogel Development, Characterization, and Nutritional Aspects. Springer, Cham. https://doi.org/10.1007/978-3-031-46831-5_8

Download citation

Publish with us

Policies and ethics