Skip to main content
Log in

Structure and Properties of Organogels Developed by Diosgenin in Canola Oil

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this study, naturally occurring ingredient diosgenin was utilized as an organogelator for structuring canola oil. Results show that stable diosgenin-based organogel can be obtained at only 2% of diosgenin concentration when the gel preparation temperature is 100 °C. Oil binding capacity and rheological properties of the organogel were investigated. Results demonstrate that these two macroscopic characteristics of the organogels can be significantly modified by simply changing the gel preparation temperature or diosgenin concentration. When the preparation temperature was 120 °C and the diosgenin concentration higher than 4%, oil binding capacity of at least 90% were obtained. Furthermore, higher gel preparation temperature resulted in higher G′values of the diosgenin-based organogels. According to the results analyzed by polarized light microscopy, XRD and FT-IR, it can be found that the possible gelation mechanism of the diosgenin-based organogels is formation of supramolecular structures by self-assembly of diosgenin molecule crystals via hydrogen bonding interaction. Varying gel preparation conditions of the organogels lead to self-assembly of diosgenin molecules to form different microstructures. Therefore, diosgenin can be considered as a good organogelator for producing functional organogel from canola oil. The novel diosgenin-based organogel is expected to be widely used in bio-related fields such as food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.G. Marangoni, J. Am. Oil Chem. Soc. 89(5), 749–780 (2012)

    Article  CAS  Google Scholar 

  2. K.F. Chaves, D. Barrera-Arellano, A.P.B. Ribeiro, Food Res. Int. 105, 863–872 (2018)

    Article  CAS  Google Scholar 

  3. H. Pehlivanoglu, M. Demirci, O.S. Toker, N. Konar, S. Karasu, O. Sagdic, Crit Rev Food Sci Nutr 58(8), 1330–1341 (2018)

    Article  CAS  Google Scholar 

  4. A.J. Martins, A.A. Vicente, R.L. Cunha, M.A. Cerqueira, Food Funct 9(2), 758–773 (2018)

    Article  CAS  Google Scholar 

  5. T.A. Stortz, A.K. Zetzl, S. Barbut, A. Cattaruzza, A.G. Marangoni, Lipid Technol 24(7), 151–154 (2012)

    Article  CAS  Google Scholar 

  6. A.J. Wright, A.G. Marangoni, J. Am. Oil Chem. Soc. 83(6), 497–503 (2006)

    Article  CAS  Google Scholar 

  7. M. Davidovich-Pinhas, S. Barbut, and A. J. C. p. Marangoni, Carbohyd Polym 127, 355–362 (2015)

  8. D. Kouzounis, A. Lazaridou, E. Katsanidis, Meat Sci 130, 38–46 (2017)

    Article  CAS  Google Scholar 

  9. D.C. Zulim Botega, A.G. Marangoni, A.K. Smith, H.D. Goff, J Food Sci 78(9), C1334–C1339 (2013)

    Article  CAS  Google Scholar 

  10. A. Matheson, G. Dalkas, P. Clegg, S.R. Euston, Nutr bull 43(2), 189–194 (2018)

    Article  CAS  Google Scholar 

  11. M. Bodennec, Q. Guo, D. Rousseau, RSC Adv 6(53), 47373–47381 (2016)

    Article  CAS  Google Scholar 

  12. A.R. Patel, D. Schatteman, W. H. De Vos and K. J. R. a. Dewettinck. RSC Adv 3(16), 5324–5327 (2013)

  13. C.H. Huang, J.Y. Cheng, M.C. Deng, C.H. Chou, T.R. Jan, Food Chem 132(1), 428–432 (2012)

    Article  CAS  Google Scholar 

  14. S. Zhao, F. Niu, C.-Y. Xu et al., Irish J Med Sci 185(3), 581–587 (2016)

    Article  CAS  Google Scholar 

  15. M. Dong, Z. Meng, K. Kuerban et al., Cell Death Dis. 9(10), 1–12 (2018)

    Google Scholar 

  16. F.-C. Wu, J.-G. Jiang, Food Funct 10(11), 7022–7036 (2019)

    Article  CAS  Google Scholar 

  17. Q. Gan, J. Wang, J. Hu et al., J Steroid Biochem Mol Biol 198, 105575 (2019)

    Article  Google Scholar 

  18. S. Wang, F. Wang, H. Yang, R. Li, H. Guo, L. Hu, Int Immunopharmacol 50, 22–29 (2017)

    Article  CAS  Google Scholar 

  19. C. Tohda, X. Yang, M. Matsui et al., Nutrients 9(10) (2017)

  20. M. Dong, Z. Meng, K. Kuerban et al., Cell Death Dis. 9(10), 1039 (2018)

    Article  Google Scholar 

  21. I.S. Son, J.H. Kim, H.Y. Sohn, K.H. Son, J.-S. Kim, C.-S. Kwon, Biosci. Biotechnol. Biochem. 71(12), 3063–3071 (2007)

    Article  CAS  Google Scholar 

  22. S. Ilkar Erdagi, F. Asabuwa Ngwabebhoh, U. Yildiz, Int J Biol Macromol 149, 651–663 (2020)

    Article  CAS  Google Scholar 

  23. S. Ilkar Erdagi, F.A. Ngwabebhoh, U. Yildiz, Mater Sci Eng C Mater Biol Appl 109, 110621 (2020)

    Article  CAS  Google Scholar 

  24. K. Zhi, H. Zhao, X. Yang et al., Nanoscale 10(8), 3639–3643 (2018)

    Article  CAS  Google Scholar 

  25. X. Guo, G. Xin, S. He et al., Org. Biomol. Chem. 11(5), 821–827 (2013)

    Article  CAS  Google Scholar 

  26. X.-Y.L. Rongyao, J. Wang, Xiong, J. Li, J Phys Chem B 110, 7275–7280 (2006)

    Article  Google Scholar 

  27. Z. Jiang, W. Gao, X. Du, F. Zhang, X. Bai, J Oleo Sci 68(5), 399–408 (2019)

    Article  CAS  Google Scholar 

  28. X. Li, A.S.M. Saleh, P. Wang et al., Food Biophys 12(3), 356–364 (2017)

    Article  Google Scholar 

  29. Y. Wang, Y. Chi, W. Zhang et al., Cryst. Growth Des. 16(3), 1492–1501 (2016)

    Article  CAS  Google Scholar 

  30. N. Gong, Y. Wang, B. Zhang, D. Yang, G. Du, Y. Lu, Steroids 143, 18–24 (2019)

    Article  CAS  Google Scholar 

  31. A.I. Blake, E.D. Co, A.G. Marangoni, J. Am. Oil Chem. Soc. 91(6), 885–903 (2014)

    Article  CAS  Google Scholar 

  32. M.A. Rogers, A.J. Wright, A.G. Marangoni, Curr Opin Colloid In 14(1), 33–42 (2009)

    Article  CAS  Google Scholar 

  33. M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai, K. Hanabusa, Langmuir 19(21), 8622–8624 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (grant number 31701580) and the Natural Science Foundation of Hunan Province (grant number 2019JJ50229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyin Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Wan, Z., Xia, H. et al. Structure and Properties of Organogels Developed by Diosgenin in Canola Oil. Food Biophysics 15, 452–462 (2020). https://doi.org/10.1007/s11483-020-09643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09643-x

Keywords

Navigation