Skip to main content
Log in

Organogels: An Alternative Edible Oil-Structuring Method

  • Review
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Structuring liquid oils has become an active area of research in the past decade, mainly due to pressures to reduce saturated fat intake and eliminate trans fats from our diets. However, replacing hard fats with liquid oil can lead to major changes in the quality of food products. Recent strategies to impart solid-fat functionality to liquid oils include the addition of unusual compounds to oil, leading to its gelation. These include small-molecule organogelators such as phytosterols and 12-hydroxystearic acid, which self-assemble into crystalline fibers which trap oil. Other crystalline additives include waxes, ceramides, monoacylglycerides, and other surfactants. Recently, the polymer ethyl cellulose was reported to form a polymer gel in triacylglyceride (TAG) oils. Other non-conventional strategies also include the formation of protein-stabilized cellular solids with oil trapped within the cells. In this review, we summarize the research on each one of these components in order to provide a comprehensive overview of the state of the area in oleogel research and provide future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Weiss RG, Térech P (2006) Introduction. In: Weiss RG, Térech P (eds) Molecular gels: materials with self-assembled fibrillar networks. Springer, Dordrecht, pp 1–16

    Google Scholar 

  2. Marangoni AG, Garti N (2011) Edible oleogels: structure and health implications. AOCS Press, Urbana

    Google Scholar 

  3. Térech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97:3133–3159

    Google Scholar 

  4. Abdallah DJ, Weiss RG (2000) Organogels and low molecular mass organic gelators. Adv Mater 2000:1237–1247

    Google Scholar 

  5. Rogers MA (2009) Novel structuring strategies for unsaturated fats—meeting the zero-trans, zero-saturated fat challenge: a review. Food Res Int 42:747–753

    CAS  Google Scholar 

  6. Mensink RP, Zock PL, Kester ADM, Katan MB (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77:1146–1155

    CAS  Google Scholar 

  7. Keys A (1957) Diet and the epidemiology of coronary heart disease. J Am Med Assoc 164:1912–1919

    CAS  Google Scholar 

  8. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC (2006) Trans fatty acids and cardiovascular disease. N Engl J Med 354:1601–1613

    CAS  Google Scholar 

  9. Ascherio A, Katan MB, Zock PL, Stampfer MJ, Willett WC (1999) Trans fatty acids and coronary heart disease. N Engl J Med 340:1994–1998

    CAS  Google Scholar 

  10. Brandt M, Moss J, Ferguson M (2009) The 2006–2007 Food Label and Package Survey (FLAPS): nutrition labelling, trans fat labelling. J Food Compos Anal 225:S74–S77

    Google Scholar 

  11. LeGault L, Brandt MB, McCabe N, Adler C, Brown AM, Brecher S (2004) 2000–2001 Food Label and Package Survey: an update on prevalence of nutrition labeling and claims on processed, packaged foods. J Am Diet Assoc 104:952–958

    Google Scholar 

  12. Weiss TJ (1970) Food oils and their uses. The AVI Publishing Company, Westport 224 p

    Google Scholar 

  13. Smith DK (2008) Molecular gels—nanostructured soft materials. In: Atwood JL, Steed JW (eds) Organic nanostructures. Wiley-VCH, Weinheim, pp 111–153

    Google Scholar 

  14. Burkhardt M, Kinzel S, Gradzielski M (2009) Macroscopic properties and microstructure of HSA based organogels: sensitivity to polar additives. J Colloid Interface Sci 331:514–521

    CAS  Google Scholar 

  15. Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104:1201–1218

    CAS  Google Scholar 

  16. Wright, Marangoni (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J Am Oil Chem Soc 83:497–503

    CAS  Google Scholar 

  17. Bot A, Veldhuizen YSJ, den Adel R, Roijers EC (2009) Non-TAG structuring of edible oils and emulsions. Food Hydrocoll 23:1184–1189

    CAS  Google Scholar 

  18. Pernetti M, van Malssen KF, Flöter E, Bot A (2007) Structuring of edible oils by alternatives to crystalline fat. Curr Opin Colloid Interface Sci 12:221–231

    CAS  Google Scholar 

  19. Marangoni AG, Acevedo N, Maleky F, Co E, Peyronel F, Mazzanti G, Quinn B, Pink D (2011) Edible triglyceride nanostructures—the pleasures of fat (submitted)

  20. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73

    CAS  Google Scholar 

  21. Narine SS, Marangoni AG (1999) Relating structure of fat crystal networks to mechanical properties: a review. Food Res Int 32:227–248

    CAS  Google Scholar 

  22. Citerne GP, Carreau PJ, Moan M (2001) Rheological properties of peanut butter. Rheol Acta 40:86–96

    CAS  Google Scholar 

  23. van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isotacticity. J Phys Condens Matter 22:1–24

    Google Scholar 

  24. Mason TG, Bibette J, Weitz DA (1995) Elasticity of compressed emulsions. Phys Rev Lett 75:2051–2054

    CAS  Google Scholar 

  25. Lloyd DJ (1926) The problem of gel structure. In: Alexander J (ed) Colloid chemistry, vol 1. The Chemical Catalog Co, New York, pp 767–782

    Google Scholar 

  26. Graham T (1861) Liquid diffusion applied to analysis. Philos Trans R Soc Lond 151:183–224

    Google Scholar 

  27. Bungenberg de Jong HG (1949) A survey of the study objects in this volume. In: Kruyt HR (ed) Colloid science, vol 2. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  28. Hermans PH (1949) Gels. In: Kruyt HR (ed) Colloid science, vol 2. Elsevier, Amsterdam, pp 483–651

    Google Scholar 

  29. Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation. J Am Chem Soc 63:3083–3090

    CAS  Google Scholar 

  30. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys 11:45–55

    CAS  Google Scholar 

  31. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  32. Flory PJ (1974) Introductory lecture. Faraday Discuss Chem Soc 57:7–18

    CAS  Google Scholar 

  33. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  34. Almdal K, Dyre J, Hvidt S, Kramer O (1992) Towards a phenomenological definition of the term ‘gel’. Polym Gels Netw 1:5–17

    Google Scholar 

  35. Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JWE (2009) Potential food applications of edible oil organogels. Trends Food Sci Technol 20:470–480

    CAS  Google Scholar 

  36. Duffy N, Blonk HCG, Beindorff CM, Cazade M, Bot A, Duchateau GSMJE (2009) Organogel-based emulsion systems, micro-structural features and impact on in vitro digestion. J Am Oil Chem Soc 86:733–741

    CAS  Google Scholar 

  37. Ghosh V, Ziegler GR, Anantheswaran RC (2002) Fat, moisture, and ethanol migration through chocolates and confectionary coatings. Crit Rev Food Sci Nutr 42:583–626

    CAS  Google Scholar 

  38. Elliger CA, Guadagni DG, Dunlap CE (1972) Thickening action of hydroxystearates in peanut butter. J Am Oil Chem Soc 49:536–537

    CAS  Google Scholar 

  39. Williman H, Walde P, Luisi PL, Gazzaniga A, Stroppolo F (1992) Lecithin organogel as matrix for transdermal transport of drugs. J Pharm Sci 81:871–874

    Google Scholar 

  40. Abdallah DJ, Lu L, Weiss RG (1999) Thermoreversible organogels from alkane gelators with one heteroatom. Chem Mater 11:2907–2911

    CAS  Google Scholar 

  41. Srivastava SP, Saxena AK, Tandon RS, Shekher V (1997) Measurement and prediction of solubility of petroleum waxes in organic solvents. Fuel 76:625–630

    CAS  Google Scholar 

  42. Marie E, Chevalier Y, Brunel S, Eydoux F, Germanaud L, Flore P (2004) Settling of paraffin crystals in cooled middle distillate fuels. J Colloid Interface Sci 269:117–125

    CAS  Google Scholar 

  43. Abdallah DJ, Weiss RG (2000) n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 16:352–355

    CAS  Google Scholar 

  44. Abdallah DJ, Sirchio SA, Weiss RG (2000) Hexatriacontane organogels—the first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir 16:7558–7561

    CAS  Google Scholar 

  45. Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez MM (2007) Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J Am Oil Chem Soc 84:989–1000

    CAS  Google Scholar 

  46. Wolfmeier U, Schmidt H, Heinrichs FL, Michalczyk G, Payer W, Dietsche W, Boehlke K, Hohner G, Wildgruber J (2005) Waxes. In: Hans-Jurgen A (ed) Ullmann’s encyclopedia of industrial chemistry, 5th edn. Wiley-VCH, Weinheim, p 63

    Google Scholar 

  47. Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Weiss RG, Toro-Vazquez JF (2009) Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil. Eur J Lipid Sci Technol 111:207–215

    CAS  Google Scholar 

  48. Chevallier V, Provost E, Bourdet JB, Bouroukba M, Petitjean D, Dirand M (1999) Mixtures of numerous different n-alkanes: 1. Structural studies by X-ray diffraction at room temperature—correlation between the crystallographic long c parameter and the average composition of multi-alkane phases. Polymer 40:2121–2128

    CAS  Google Scholar 

  49. Chevallier V, Petitjean D, Bouroukba M, Dirand M (1999) Mixtures of numerous different n-alkanes: 2. Studies by X-ray diffraction and differential thermal analysis with increasing temperature. Polymer 40:2129–2137

    CAS  Google Scholar 

  50. Zhou Y, Hartel RW (2006) Phase behavior of model lipid systems: solubility of high-melting fats in low-melting fats. J Am Oil Chem Soc 83:505–511

    CAS  Google Scholar 

  51. Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Toro-Vazquez JF (2009) Rheological properties of candelilla wax and dotriacontane organogels measured with a true-gap system. J Am Oil Chem Soc 86:765–772

    CAS  Google Scholar 

  52. Chopin-Doroteo M, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Toro-Vazquez JF (2011) The effect of shearing in the thermo-mechanical properties of candelilla wax and candelilla wax-tripalmitin organogels. Food Biophys 6:359–376

    Google Scholar 

  53. Martini S, Carelli AA, Lee J (2008) Effect of the addition of waxes on the crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc 85:1097–1104

    CAS  Google Scholar 

  54. Toro-Vazquez JF, Alonzo-Macías MA, Dibildox-Alvarado E, Charó-Alonso MA (2009) The effect of tripalmitin crystallization on the thermo-mechanical properties of candelilla wax organogels. Food Biophys 4:199–212

    Google Scholar 

  55. Belavadi VK, Bhowmick DN (1988) An investigation of rice bran oil tank settling. J Am Oil Chem Soc 65:241–245

    CAS  Google Scholar 

  56. Koonce SD, Brown JB (1944) An historical review of the chemistry of carnauba wax. J Am Oil Chem Soc 21:167–170

    CAS  Google Scholar 

  57. Vandenburg LE, Wilder EA (1970) The structural constituents of carnauba wax. J Am Oil Chem Soc 47:514–518

    CAS  Google Scholar 

  58. Dassanayake LSK, Kodali DR, Ueno S, Sato K (2009) Physical properties of rice bran wax in bulk and organogels. J Am Oil Chem Soc 86:1163–1173

    CAS  Google Scholar 

  59. Dassanayake LSK, Kodali DR, Ueno S, Sato K (2011) Physical properties of organogels made of rice bran wax and vegetable oils. In: Marangoni AG, Garti N (eds) Edible oleogels: structure and health implications. AOCS Press, Urbana, pp 149–172

    Google Scholar 

  60. Daniel J, Rajasekharan R (2003) Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters and dicarboxylic acids. J Am Oil Chem Soc 80:417–421

    CAS  Google Scholar 

  61. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    CAS  Google Scholar 

  62. Gandolfo FG, Bot A, Flöter E (2004) Structuring of edible oils by long-chain FA, fatty alcohols and their mixtures. J Am Oil Chem Soc 81:1–6

    CAS  Google Scholar 

  63. Webber RM (2001) Yield properties of wax crystal structures formed in lubricant mineral oils. Ind Eng Chem Res 40:195–203

    CAS  Google Scholar 

  64. Schaink HM, van Malssen KF, Morgado-Alves S, Kalnin D, van der Linden E (2007) Crystal network for edible oil organogels: possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res Int 40:1185–1193

    CAS  Google Scholar 

  65. Gandolfo FG, Bot A, Flöter E (2003) Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochim Acta 404:9–17

    CAS  Google Scholar 

  66. Sirota EB, King HE, Shao HH, Singer DM (1995) Rotator phases in mixtures of n-alkanes. J Phys Chem 99:798–804

    CAS  Google Scholar 

  67. Binder RG, Applewhite TH, Kohler GO, Goldblatt LA (1962) Chromatographic analysis of seed oils. Fatty acid composition of castor oil. J Am Oil Chem Soc 39:513–517

    CAS  Google Scholar 

  68. Maskaev AK, Man’kovskaya NK, Lend’el IV, Fedorovskii VT, Simurova EI, Terent’eva VN (1971) Preparation of 12-hydroxystearic acid, the raw material for plastic greases. Chem Technol Fuels Oils 8:511–514

    Google Scholar 

  69. Babu S, Sudershan RV, Sharma RK, Ramesh VB (1996) A simple and rapid polarimetric method for quantitative determination of castor oil. J Am Oil Chem Soc 73:397–398

    CAS  Google Scholar 

  70. Kamijo M, Nagase H, Endo T, Ueda H, Nakagaki M (1999) Polymorphic structure of dl-12-hydroxystearic acid. Anal Sci 15:1291–1292

    CAS  Google Scholar 

  71. Térech P, Rodriguez V, Barnes JD, McKenna GB (1994) Organogels and aerogels of racemic and chiral 12-hydroxyoctadecanoic acid. Langmuir 10:3406–3418

    Google Scholar 

  72. Fraser H (1946) Production of Lubricants. U.S. Patent 2,397,956

  73. Lurz JA (2008) Grease production survey report for the calendar years 2005, 2006, 2007 and 2008. National Lubricating Grease Institute, Kansas City

    Google Scholar 

  74. Tamura T, Ichikawa M (1997) Effect of lecithin on organogel formation of 12-hydroxystearic acid. J Am Oil Chem Soc 74:491–495

    CAS  Google Scholar 

  75. Masri MD, Goldblatt LA, Deeds F, Kohler GO (1962) Relation of cathartic activity to structural modifications of ricinoleic acid of castor oil. J Pharm Sci 510:999–1002

    Google Scholar 

  76. Kuwahara T, Nagase H, Endo T, Ueda H, Nakagaki M (1996) Crystal structure of dl-12-hydroxystearic acid. Chem Lett 1996:435–436

    Google Scholar 

  77. Rogers MA, Wright AJ, Marangoni AG (2008) Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Res Int 41:1026–1034

    CAS  Google Scholar 

  78. Térech P (1992) 12-d-Hydroxyoctadecanoic acid organogels: a small angle neutron scattering study. J Phys II 2:2181–2196

    Google Scholar 

  79. Wang RY, Liu XY, Narayanan J, Xiong JY, Li JL (2006) Architecture of fiber network: from understanding to engineering of molecular gels. J Phys Chem B 110:25797–25802

    CAS  Google Scholar 

  80. Térech P, Pasquier D, Bordas V, Rossat C (2000) Rheological properties and structural correlations in molecular organogels. Langmuir 16:4485–4494

    Google Scholar 

  81. Wang RY, Liu XY, Xiong JY, Li JL (2006) Real-time observation of fiber network formation in molecular organogel: supersaturation-dependent microstructure and its related rheological property. J Phys Chem B 110:7275–7280

    CAS  Google Scholar 

  82. Liu XY (2005) Gelation with small molecules: from formation mechanism to network architecture. In: Fages F (ed) Topics in current chemistry 256: low molecular mass organogelators. Springer, Berlin, pp 1–37

    Google Scholar 

  83. Lam R, Quaroni L, Pedersen T, Rogers MA (2010) A molecular insight into the nature of crystallographic mismatches in self-assembled fibrillar networks under non-isothermal crystallization conditions. Soft Matter 6:404–408

    CAS  Google Scholar 

  84. Liu XY, Sawant PD (2002) Determination of the fractal characteristic of nanofiber-network formation in supramolecular materials. ChemPhysChem 3:374–377

    CAS  Google Scholar 

  85. Rogers MA, Marangoni AG (2008) Non-isothermal nucleation and crystallization of 12-hydroxystearic acid in vegetable oils. Cryst Growth Des 8:4596–4601

    CAS  Google Scholar 

  86. Elondou JP, Girard-Reydet E, Gérard JF, Pascault JP (2005) Calorimetric and rheological studies of 12-hydroxystearic acid/diglycidyl ether of bisphenol A blends. Polym Bull 53:367–375

    Google Scholar 

  87. Rogers MA, Wright AJ, Marangoni AG (2009) Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Curr Opin Colloid Interface Sci 14:33–42

    CAS  Google Scholar 

  88. Rogers MA, Wright AJ, Marangoni AG (2008) Post-crystallization increases in the mechanical strength of self-assembled fibrillar networks is due to an increase in network supramolecular ordering. J Phys D Appl Phys 41:1–5

    Google Scholar 

  89. Barone P, Ramponi A, Sebastian G (2001) On the numerical inversion of the Laplace transform for nuclear magnetic resonance relaxometry. Inverse Prob 17:77–94

    Google Scholar 

  90. Rogers MA, Wright AJ, Marangoni AG (2008) Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter 4:1483–1490

    CAS  Google Scholar 

  91. Rogers MA, Smith AK, Wright AJ, Marangoni AG (2007) A novel cryo-SEM technique for imaging vegetable oil based organogels. J Am Oil Chem Soc 84:899–906

    CAS  Google Scholar 

  92. Wright AJ, Marangoni AG (2006) Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels. J Am Oil Chem Soc 83:497–503

    CAS  Google Scholar 

  93. Wright AJ, Marangoni AG (2007) Time, temperature and concentration dependence of ricinelaidic acid–canola oil organogelation. J Am Oil Chem Soc 84:3–9

    CAS  Google Scholar 

  94. Wright AJ, Marangoni AG (2011) Vegetable oil-based ricinelaidic acid organogels—phase behavior, microstructure and rheology. In: Marangoni AG, Garti N (eds) Edible oleogels: structure and health implications. AOCS Press, Urbana, pp 81–99

    Google Scholar 

  95. Batte HD, Wright AJ, Rush JW, Idziak SHJ, Marangoni AG (2007) Phase behaviour, stability, and mesomorphism of mono-stearin–oil–water gels. Food Biophys 2:29–37

    Google Scholar 

  96. Batte HD, Wright AJ, Rush JW, Idziak SHJ, Marangoni AG (2007) Effect of processing conditions on the structure of monostearin–oil–water gels. Food Res Int 40:982–988

    CAS  Google Scholar 

  97. Rush JWE, Jantzi PS, Dupak K, Idziak SHJ, Marangoni AG (2008) Effect of food preparation on the structure and metabolic responses to a monostearin–oil–water gel based spread. Food Res Int 41:1065–1071

    CAS  Google Scholar 

  98. Krog N, Larsson K (1968) Phase behaviour and rheological properties of aqueous systems of industrial distilled monoglycerides. Chem Phys Lipids 2:129–143

    CAS  Google Scholar 

  99. Larsson K, Krog N (1973) Structural properties of lipid–water gel phase. Chem Phys Lipids 10:177–180

    CAS  Google Scholar 

  100. Brokaw GY, Lyman WC (1958) The behaviour of distilled monoglycerides in the presence of water. J Am Oil Chem Soc 35:49–52

    CAS  Google Scholar 

  101. Marangoni AG, Idziak SHJ, Vega C, Batte H, Ollivon M, Jantzi PS, Rush WE (2007) Encapsulation-structuring of edible oil attenuates acute elevation of blood lipids and insulin in humans. Soft Matter 3:183–187

    CAS  Google Scholar 

  102. Chen CH, Terentjev EM (2009) Aging and metastability of monoglycerides in hydrophobic solutions. Langmuir 25:6717–6724

    CAS  Google Scholar 

  103. Kesselman E, Shimoni E (2007) Imaging of oil/monoglyceride networks by polarizing near-field scanning optical microscopy. Food Biophys 2:117–123

    Google Scholar 

  104. Da Pieve S, Calligaris S, Co E, Nicoli MC, Marangoni AG (2010) Shear nanostructuring of monoglyceride organogels. Food Biophys 5:211–217

    Google Scholar 

  105. Ojijo NKO, Neeman I, Eger S, Shimoni E (2004) Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks. J Sci Food Agric 84:1585–1593

    CAS  Google Scholar 

  106. Chen CH, Terentjev EM (2011) Monoglycerides in oils. In: Marangoni AG, Garti N (eds) Edible oleogels: structure and health implications. AOCS Press, Urbana, pp 173–201

    Google Scholar 

  107. Ojijo NKO, Kesselman E, Shuster V, Eichler S, Eger S, Neeman I, Shimoni E (2004) Changes in microstructural, thermal, and rheological properties of olive oil/monoglyceride networks during storage. Food Res Int 37:385–393

    CAS  Google Scholar 

  108. Zinic M, Vogtle F, Fages F (2005) Cholesterol-based gelators. In: Fages F (ed) Topics in current chemistry # 256: low molecular mass gelators: design, self-assembly, function. Springer, Berlin, pp 39–76

    Google Scholar 

  109. Gill V (2008) Feature: kitchen chemistry—one of the world’s largest food companies has reinvented its approach to R&D. Chemistry World 5:60–63

    Google Scholar 

  110. Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol concentrations. Mayo Clinic Proc 78:965–978

    CAS  Google Scholar 

  111. Law M (2000) Plant sterol and stanol margarines and health. Br Med J 320:861–864

    CAS  Google Scholar 

  112. Bot A, Agterof WGM (2006) Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. J Am Oil Chem Soc 83:513–521

    CAS  Google Scholar 

  113. Bot A, den Adel R, Roijers EC (2008) Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. J Am Oil Chem Soc 85:1127–1134

    CAS  Google Scholar 

  114. den Adel R, Heussen PCM, Bot A (2010) Effect of water on self-assembled tubules in β-sitosterol + γ-oryzanol-based organogels. J Phys: Conf Ser 247:012025

    Google Scholar 

  115. Craven BM (1986) The physical chemistry of lipids—from alkanes to phospholipids. In: Hannahan DJ, Small DM (eds) Handbook of lipid research, vol 4. Plenum Press, New York, pp 149–182

    Google Scholar 

  116. Christiansen LI, Rantanen JT, von Bonsdorff AK, Karjalainen MA, Yliruusi JK (2002) A novel method of producing a microcrystalline β-sitosterol suspension in oil. Eur J Pharm Sci 15:261–269

    CAS  Google Scholar 

  117. Bot A, den Adel R, Roijers EC, Regkos C (2009) Effect of sterol type on structure of tubules in sterol + γ-oryzanol-based organogels. Food Biophys 4:266–272

    Google Scholar 

  118. Sawalha H, Venema P, Bot A, Flöter E, van der Linden E (2011) The influence of concentration and temperature on the formation of γ-oryzanol + β-sitosterol tubules in edible oil organogels. Food Biophys 6:20–25

    Google Scholar 

  119. Rogers MA, Bot A, Lam RSH, Pedersen T, May T (2010) Multi-component hollow tubules formed using phytosterol and γ-oryzanol based compounds: an understanding of their molecular embrace. J Phys Chem A 114:8278–8285

    CAS  Google Scholar 

  120. Bot A, den Adel R, Regkos C, Sawalha H, Venema P, Flöter E (2011) Structuring in β-sitosterol + γ-oryzanol-based emulsion gels during various stages of a temperature cycle. Food Hydrocolloids 25:639–646

    CAS  Google Scholar 

  121. Rogers MA, Wright AJ, Marangoni AG (2009) Oil organogels: the fat of the future. Soft Matter 5:1594–1596

    CAS  Google Scholar 

  122. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol 96:523–526

    CAS  Google Scholar 

  123. Selzner M, Bielawska A, Morse MA, Rüdiger HA, Sindram D, Hannun YA, Clavien PA (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61:1233–1240

    CAS  Google Scholar 

  124. Zhang L, Hellgren LI, Xu X (2006) Enzymatic production of ceramide from sphingomyelin. J Biotechnol 123:93–105

    CAS  Google Scholar 

  125. Raudenkolb S, Wartewig S, Neubert RH (2003) Polymorphism of ceramide 3. Part 2: a vibrational spectroscopic and X-ray powder diffraction investigation of N-octadecanoyl phytosphingosine and the analogous specifically deuterated d35 derivative. Chem Phys Lipids 124:89–103

    CAS  Google Scholar 

  126. Rogers MA (2011) Ceramide Oleogels. In: Marangoni AG, Garti N (eds) Edible oleogels: structure and health implications. AOCS Press, Urbana, pp 221–234

    Google Scholar 

  127. Pernetti M, van Malssen KF, Kalnin D, Flöter E (2007) Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloids 21:855–861

    CAS  Google Scholar 

  128. Murdan S, Gregoriadis G, Florence AT (1999) Novel sorbitan monostearate organogels. J Pharm Sci 88:608–614

    CAS  Google Scholar 

  129. Shchipunov YA (2001) Lecithin organogel—a micellar system with unique properties. Colloids Surf A 183(185):541–554

    Google Scholar 

  130. Scartazzini R, Luisi PL (1988) Organogels from lecithins. J Phys Chem 92:829–833

    CAS  Google Scholar 

  131. Dey T, Kim DA, Marangoni AG (2011) Ethylcellulose oleogels. In: Marangoni AG, Garti N (eds) Edible oleogels: structure and health implications. AOCS Press, Urbana, pp 295–311

    Google Scholar 

  132. Laredo T, Barbut S, Marangoni AG (2011) Molecular interactions of polymer oleogelation. Soft Matter 7:2734–2743

    CAS  Google Scholar 

  133. Mezzenga R (2011) Protein-templated oil gels and powders. In: Marangoni AG, Garti N (eds) Edible oleogels: structure and health implications. AOCS Press, Urbana, pp 271–293

    Google Scholar 

  134. Shaw LA, McClements DJ, Decker EA (2007) Spray-dried multilayered emulsions as a delivery method for omega-3 fatty acids into food systems. J Agric Food Chem 55:3112–3119

    CAS  Google Scholar 

  135. Romoscanu A, Mezzenga R (2005) Cross linking and rheological characterization of adsorbed protein layers at the oil–water interface. Langmuir 21:9689–9697

    CAS  Google Scholar 

  136. Romoscanu AI, Mezzenga R (2006) Emulsion-templated fully reversible protein-in-oil gels. Langmuir 22:7812–7818

    CAS  Google Scholar 

  137. Buzza DMA, Lu CYD, Cates ME (1995) Linear shear rheology of incompressible foams. J Phys II 5:37–52

    CAS  Google Scholar 

  138. Mezzenga R, Ulrich S (2010) Spray-dried oil powder with ultrahigh oil content. Langmuir 26:16658–16661

    CAS  Google Scholar 

  139. Libster D, Aserin A, Garti N (2011) Oleogels based on non-lamellar lyotropic liquid crystalline structures for food applications. In: Marangoni AG, Garti N (eds) Edible oleogels: structure and health implications. AOCS Press, Urbana, pp 235–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Alejandro G. Marangoni.

About this article

Cite this article

Edmund Daniel Co., Marangoni, A.G. Organogels: An Alternative Edible Oil-Structuring Method. J Am Oil Chem Soc 89, 749–780 (2012). https://doi.org/10.1007/s11746-012-2049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-012-2049-3

Keywords

Navigation