Skip to main content
Log in

Glass Transition and Water Dynamics in Hyaluronic Acid Hydrogels

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Glass transition and water dynamics in hydrated hyaluronic acid (HA) hydrogels crosslinked by divinyl sulfone (DVS) were studied by differential scanning calorimetry (DSC), dielectric relaxation spectroscopy (DRS) and water sorption—desorption (ESI) measurements. A critical water fraction of about h w = 0.17 (g of water per g of hydrated HA) for a change in the hydration properties of the material was estimated. Water crystallization was recorded by DSC during cooling and heating for water fraction values h w ≥ 0.31. The glass transition of the hydrated system was recorded in the water fraction region 0.06 ≤ h w ≤ 0.59. The T g was found to decrease with increasing hydration level, starting from T g = −48 °C down to about T g = −80 °C and then to stabilize there, for the hydration levels where water crystallization occurs, suggesting that the origin of the glass transition is the combined motion of uncrystallized water molecules attached to primary hydration sites and segments of the HA chains. DRS studies revealed two relaxation peaks, associated with the main secondary relaxation process of uncrystallized water molecules (UCW) triggering the mobility of polar groups and the segmental mobility of HA chains (α relaxation). The α relaxation was in good agreement with the results by DSC. A qualitative change in the dynamics of the α relaxation was found for h w = 0.23 and was attributed to a reorganization of water in the material due to structural changes. Finally, the dielectric strength of the relaxation of UCW was found to decrease in the water fraction region of the structural changes, i.e. for h w ~ 0.23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.C. Laurent, Ciba Foundation Symposium, vol. 143 (John Wiley and Sons, New York, 1989), pp. 1–298

    Google Scholar 

  2. J. Necas, L. Bartosikov, P. Brauner, J. Kolar, Vet. Med. 53(8), 397–411 (2008)

    CAS  Google Scholar 

  3. M.K. Cowman, M. Li, E.A. Balazs, Biophys. J. 75, 2030–2037 (1998)

    Article  CAS  Google Scholar 

  4. M.K. Cowman, S. Matsuoka, Carbohydr. Res. 340, 791–809 (2005)

    Article  CAS  Google Scholar 

  5. C.E. Schanté, G. Zuber, C. Herlin, T.F. Vendamme, Carbohydr. Polym. 85, 469–489 (2011)

    Article  Google Scholar 

  6. E.J. Oh, K. Park, K.S. Kim, J. Kim, J.-A. Yang, J.-H. Kong, M.Y. Lee, A.S. Hoffman, S.K. Hahn, J. Control. Release 141, 2–12 (2010)

    Article  CAS  Google Scholar 

  7. A.S. Hoffman, Adv. Drug Deliv. Rev. 54, 3–12 (2002)

    Article  CAS  Google Scholar 

  8. F. Lee, M. Kurisawa, Acta Biomaterialia 9(2), 5143–5152 (2013)

    Google Scholar 

  9. H.N. Joshi, E.M. Topp, Int. J. Pharm. 80, 213–225 (1992)

    Article  CAS  Google Scholar 

  10. J. Kucerik, A. Prusova, A. Rotaru, K. Flimel, J. Janecek, P. Conte, Thermochim. Acta 523, 245–249 (2011)

    Article  CAS  Google Scholar 

  11. M.N. Collins, C. Birkinshaw, J. Mater. Sci. Mater. Med. 19, 3335–3343 (2008)

    Article  CAS  Google Scholar 

  12. R. Servaty, J. Schiller, H. Binder, K. Arnold, Int. J. Biol. Macromol. 28, 121–127 (2001)

    Article  CAS  Google Scholar 

  13. J. Kaufmann, K. Möhle, H.J. Hofmann, K. Arnold, J. Mol. Struct. (THEOCHEM) 422, 109–121 (1998)

    Article  CAS  Google Scholar 

  14. H. Sugimoto, T. Miki, K. Κanayama, M. Norimoto, J. Non-Cryst. Solids 354, 3220–3224 (2008)

    Article  CAS  Google Scholar 

  15. J. Mijović, Y. Bian, R.A. Gross, B. Chen, Macromolecules 38, 10812–10819 (2005)

    Article  Google Scholar 

  16. J. Swenson, H. Jansson, J. Hedström, R. Bergman, J. Phys. Condens. Matter 19, 205109–205117 (2007)

    Article  Google Scholar 

  17. C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628–12631 (2009)

    Article  CAS  Google Scholar 

  18. W. Doster, S. Busch, A.M. Gaspar, M.S. Appavu, J. Wuttke, H. Scheer, Phys. Rev. Lett. 104, 098101–098104 (2010)

    Article  CAS  Google Scholar 

  19. A. Panagopoulou, A. Kyritsis, N. Shinyashiki, P. Pissis, J. Phys. Chem. B 116, 4593–4602 (2012)

    Article  CAS  Google Scholar 

  20. P. Pissis, A. Kyritsis, J. Polym. Sci. B Polym. Phys. 51(3), 159–175 (2013)

    Article  CAS  Google Scholar 

  21. G. Careri, Prog. Biophys. Mol. Biol. 70, 223–249 (1998)

    Article  CAS  Google Scholar 

  22. S. Cerveny, A. Alegria, J. Colmenero, Phys. Rev. E 77, 031803–031807 (2008)

    Article  Google Scholar 

  23. K.L. Ngai, S. Capaccioli, S. Ancherbak, N. Shinyashiki, Phil. Mag. 91, 1809–1835 (2011)

    Article  CAS  Google Scholar 

  24. A. Panagopoulou, A. Kyritsis, A.M. Aravantinou, D. Nanopoulos, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Food Biophys. 6, 199–209 (2011)

    Article  Google Scholar 

  25. A. Panagopoulou, A. Kyritsis, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Biochim. Biophys. Acta 1814, 1984–1996 (2011)

    Article  CAS  Google Scholar 

  26. R.B. Gregory, Protein-Solvent Interactions (Marcel Dekker, New York, USA, 1995)

    Google Scholar 

  27. D. Ringe, G.A. Petsko, Biophys. Chem. 105, 667–680 (2003)

    Article  CAS  Google Scholar 

  28. P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, Proc. Natl. Acad. Sci. 101, 14408–14413 (2004)

    Article  CAS  Google Scholar 

  29. Y. Miyazaki, T. Matsuo, H. Suga, J. Phys. Chem. B 104, 8044–8052 (2000)

    Article  CAS  Google Scholar 

  30. N. Shinyashiki, W. Yamamoto, A. Yokoyama, T. Yoshinari, S. Yagihara, K.L. Ngai, S. Capaccioli, J. Phys. Chem. B 113, 14448–14456 (2009)

    Article  CAS  Google Scholar 

  31. S. Khodadadi, A. Malkovskiy, A. Kisliuk, A.P. Sokolov, Biochim. Biophys. Acta 1804, 15–19 (2010)

    Article  CAS  Google Scholar 

  32. H. Jansson, J. Swenson, Biochim. Biophys. Acta 1804, 20–26 (2010)

    Article  CAS  Google Scholar 

  33. A.L. Tournier, J. Xu, J.C. Smith, Biophys. J. 85, 1871–1875 (2003)

    Article  CAS  Google Scholar 

  34. D. Porter, F. Vollrath, Biochim. Biophys. Acta 1824, 785–791 (2012)

    Article  CAS  Google Scholar 

  35. T. Vuletić, S. Dolanski Babić, T. Ivek, D. Grgičin, S. Tomić, Phys. Rev. E 82, 011922–011932 (2010)

    Article  Google Scholar 

  36. L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. A Phys. Chem. 81A, 89–96 (1977)

    Article  Google Scholar 

  37. F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)

    Google Scholar 

  38. R.H. Cole, K.S. Cole, J. Chem. Phys. 10, 98–105 (1942)

    Article  CAS  Google Scholar 

  39. R.P. Chartoff, P.T. Weissman, A. Sirkar, in The Application of Dynamic Mechanical Methods to T g Determination in polymers: An overview, Assignment of the Glass Transition, ASTM STP 1249, ed. by R.J. Seyler (American Society for Testing and Materials, Philadelphia, 1994), pp. 88–107

    Google Scholar 

  40. H. Vogel, Phys. Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  41. A. Anagnostopoulou-Konsta, P. Pissis, J. Phys. D. Appl. Phys. 20, 1168–1174 (1987)

    Article  CAS  Google Scholar 

  42. D. Daoukaki-Diamanti, P. Pissis, G. Boudouris, Chem. Phys. 91, 315–325 (1984)

    Article  CAS  Google Scholar 

  43. P. Pissis, J. Phys. D. Appl. Phys. 18, 1897–1908 (1985)

    Article  CAS  Google Scholar 

  44. S. Ratkovic, P. Pissis, J. Mater. Sci. 32, 3061–3068 (1997)

    Article  CAS  Google Scholar 

  45. P. Pissis, J. Exp. Bot 41, 677–684 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund (A.P. and P.P.) and Research Funding Program: Aristeia (A.K. and P.P.). A.V.L. and M.M.P. acknowledge financial support of projects MAT2011-28791-C03-02 and -03.

The authors would like to acknowledge Sara Poveda Reyes and María Hernández Palacios for the preparation of the HA sheets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Panagopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagopoulou, A., Molina, J.V., Kyritsis, A. et al. Glass Transition and Water Dynamics in Hyaluronic Acid Hydrogels. Food Biophysics 8, 192–202 (2013). https://doi.org/10.1007/s11483-013-9295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9295-2

Keywords

Navigation