Skip to main content

Advertisement

Log in

The Role of CD4+ T Cells in the Immunotherapy of Brain Disease by Secreting Different Cytokines

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Upon different stimulation, naïve CD4+ T cells differentiate into various subsets of T helper (Th) cells, including Th1, Th2, Th17, and Tregs. They play both protective and pathogenic roles in the central nervous system (CNS) by secreting different cytokines. Failure of the homeostasis of the subgroups in the CNS can result in different brain diseases. Recently, immunotherapy has drawn more and more attention in the therapy of various brain diseases. Here, we describe the role of different CD4+ T cell subsets and their secreted cytokines in various brain diseases, as well as the ways in which by affecting CD4+ T cells in therapy of the CNS diseases. Understanding the role of CD4+ T cells and their secreted cytokines in the immunotherapy of brain disease will provide new targets and therapeutics for the treatment of brain disease.

Graphical Abstract

The role of CD4 + T cell subtypes in different diseases and their associated regulatory genes, proteins, and enzymes. CD4 + T cell subtypes play both protective (green) and pathogenic (red) roles in different brain diseases. The immune regulatory effects of CD4 + T cells and their subtypes are promoted or inhibited by different genes, proteins, and enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data included in this review are available upon request by contact with the corresponding author.

References

  • Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela M, Arnon R (2000) Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci USA 97:11472–11477

    Article  CAS  Google Scholar 

  • Ahuja M, Buabeid M, Abdel-Rahman E, Majrashi M, Parameshwaran K, Amin R, Ramesh S, Thiruchelvan K, Pondugula S, Suppiramaniam V, Dhanasekaran M (2017) Immunological alteration & toxic molecular inductions leading to cognitive impairment & neurotoxicity in transgenic mouse model of Alzheimer’s disease. Life Sci 177:49–59

    Article  CAS  Google Scholar 

  • Authier A, Farrand KJ, Broadley KW, Ancelet LR, Hunn MK, Stone S, McConnell MJ, Hermans IF (2015) Enhanced immunosuppression by therapy-exposed glioblastoma multiforme tumor cells. Int J Cancer 136:2566–2578

    Article  CAS  Google Scholar 

  • Babic M, Dimitropoulos C, Hammer Q, Stehle C, Heinrich F, Sarsenbayeva A, Eisele A, Durek P, Mashreghi MF, Lisnic B, Van Snick J, Löhning M, Fillatreau S, Withers DR, Gagliani N, Huber S, Flavell RA, Polic B, Romagnani C (2020) NK cell receptor NKG2D enforces proinflammatory features and pathogenicity of Th1 and Th17 cells. J Exp Med 217:e20190133

  • Baecher-Allan C, Kaskow BJ, Weiner HL (2018) Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 97:742–768

    Article  CAS  Google Scholar 

  • Baek H, Jang HI, Jeon HN, Bae H (2018) Comparison of Administration Routes on the Protective Effects of Bee Venom Phospholipase A2 in a Mouse Model of Parkinson’s Disease. Front Aging Neurosci 10:179

    Article  Google Scholar 

  • Baek H, Park SY, Ku SJ, Ryu K, Kim Y, Bae H, Lee YS (2020) Bee Venom Phospholipase A2 Induces Regulatory T Cell Populations by Suppressing Apoptotic Signaling Pathway. Toxins (Basel) 12:198

  • Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634

    Article  CAS  Google Scholar 

  • Baragetti A, Ramirez GA, Magnoni M, Garlaschelli K, Grigore L, Berteotti M, Scotti I, Bozzolo E, Berti A, Camici PG, Catapano AL, Manfredi AA, Ammirati E, Norata GD (2018) Disease trends over time and CD4(+)CCR5(+) T-cells expansion predict carotid atherosclerosis development in patients with systemic lupus erythematosus. Nutr Metab Cardiovasc Dis 28:53–63

    Article  CAS  Google Scholar 

  • Brombacher TM, Nono JK, De Gouveia KS, Makena N, Darby M, Womersley J, Tamgue O, Brombacher F (2017) IL-13-Mediated Regulation of Learning and Memory. J Immunol 198:2681–2688

    Article  CAS  Google Scholar 

  • Brück J, Glocova I, Geisel J, Kellerer C, Röcken M, Ghoreschi K (2018) Dimethyl fumarate-induced IL-17(low) IFN-γ(low) IL-4(+) Th cells protect mice from severe encephalomyelitis. Eur J Immunol 48:1588–1591

    Article  Google Scholar 

  • Bruhs A, Schwarz T, Schwarz A (2016) Prevention and Mitigation of Experimental Autoimmune Encephalomyelitis by Murine β-Defensins via Induction of Regulatory T Cells. J Invest Dermatol 136:173–181

    Article  CAS  Google Scholar 

  • Brummelman J, Pilipow K, Lugli E (2018) The Single-Cell Phenotypic Identity of Human CD8(+) and CD4(+) T Cells. Int Rev Cell Mol Biol 341:63–124

    Article  CAS  Google Scholar 

  • Chandra G, Rangasamy SB, Roy A, Kordower JH, Pahan K (2016) Neutralization of RANTES and Eotaxin Prevents the Loss of Dopaminergic Neurons in a Mouse Model of Parkinson Disease. J Biol Chem 291:15267–15281

    Article  CAS  Google Scholar 

  • Chen SJ, Wang YL, Lo WT, Wu CC, Hsieh CW, Huang CF, Lan YH, Wang CC, Chang DM, Sytwu HK (2010) Erythropoietin enhances endogenous haem oxygenase-1 and represses immune responses to ameliorate experimental autoimmune encephalomyelitis. Clin Exp Immunol 162:210–223

    Article  CAS  Google Scholar 

  • Chen J, Cascio J, Magee JD, Techasintana P, Gubin MM, Dahm GM, Calaluce R, Yu S, Atasoy U (2013) Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. J Immunol 191:5441–5450

    Article  CAS  Google Scholar 

  • Chen PY, Hsieh HY, Huang CY, Lin CY, Wei KC, Liu HL (2015) Focused ultrasound-induced blood-brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study. J Transl Med 13:93

    Article  Google Scholar 

  • Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics 14:284–297

    Article  Google Scholar 

  • Chen YR, Lai PL, Chien Y, Lee PH, Lai YH, Ma HI, Shiau CY, Wang KC (2020) Improvement of Impaired Motor Functions by Human Dental Exfoliated Deciduous Teeth Stem Cell-Derived Factors in a Rat Model of Parkinson's Disease. Int J Mol Sci 21 21(11):3807

  • Chong WP, Ling MT, Liu Y, Caspi RR, Wong WM, Wu W, Tu W, Lau YL (2013) Essential role of NK cells in IgG therapy for experimental autoimmune encephalomyelitis. PLoS ONE 8:e60862

    Article  CAS  Google Scholar 

  • Christiansen JR, Olesen MN, Otzen DE, Romero-Ramos M, Sanchez-Guajardo V (2016) α-Synuclein vaccination modulates regulatory T cell activation and microglia in the absence of brain pathology. J Neuroinflammation 13:74

    Article  Google Scholar 

  • Chung ES, Lee G, Lee C, Ye M, Chung HS, Kim H, Bae SJ, Hwang DS, Bae H (2015) Bee Venom Phospholipase A2, a Novel Foxp3+ Regulatory T Cell Inducer, Protects Dopaminergic Neurons by Modulating Neuroinflammatory Responses in a Mouse Model of Parkinson’s Disease. J Immunol 195:4853–4860

    Article  CAS  Google Scholar 

  • Chyuan IT, Tsai HF, Wu CS, Sung CC, Hsu PN (2018) TRAIL-Mediated Suppression of T Cell Receptor Signaling Inhibits T Cell Activation and Inflammation in Experimental Autoimmune Encephalomyelitis. Front Immunol 9:15

    Article  Google Scholar 

  • Dai B, Qi N, Li J, Zhang G (2018) Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model. Biochem Biophys Res Commun 501:871–876

    Article  CAS  Google Scholar 

  • Danikowski KM, Jayaraman S, Prabhakar BS (2017) Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation 14:117

    Article  CAS  Google Scholar 

  • Dansokho C, Ait Ahmed D, Aid S, Toly-Ndour C, Chaigneau T, Calle V, Cagnard N, Holzenberger M, Piaggio E, Aucouturier P, Dorothée G (2016) Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139:1237–1251

    Article  Google Scholar 

  • Dhaeze T, Tremblay L, Lachance C, Peelen E, Zandee S, Grasmuck C, Bourbonnière L, Larouche S, Ayrignac X, Rébillard RM, Poirier J, Lahav B, Duquette P, Girard M, Moumdjian R, Bouthillier A, Larochelle C, Prat A (2019) CD70 defines a subset of proinflammatory and CNS-pathogenic T(H)1/T(H)17 lymphocytes and is overexpressed in multiple sclerosis. Cell Mol Immunol 16:652–665

    Article  CAS  Google Scholar 

  • Eisenbarth SC, Baumjohann D, Craft J, Fazilleau N, Ma CS, Tangye SG, Vinuesa CG, Linterman MA (2021) CD4(+) T cells that help B cells - a proposal for uniform nomenclature. Trends Immunol 42:658–669

    Article  CAS  Google Scholar 

  • Elgueta D, Contreras F, Prado C, Montoya A, Ugalde V, Chovar O, Villagra R, Henríquez C, Abellanas MA, Aymerich MS, Franco R, Pacheco R (2019) Dopamine Receptor D3 Expression Is Altered in CD4(+) T-Cells From Parkinson’s Disease Patients and Its Pharmacologic Inhibition Attenuates the Motor Impairment in a Mouse Model. Front Immunol 10:981

    Article  CAS  Google Scholar 

  • Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA, Wang Z, Remark R, Li JR, Pina C, Faries C, Awad AJ, Moss N, Bjorkegren J, Kim-Schulze S, Gnjatic S, Ma’ayan A, Mocco J, Faries P, Merad M, Giannarelli C (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–1588

    Article  CAS  Google Scholar 

  • Filley A, Henriquez M, Bhowmik T, Tewari BN, Rao X, Wan J, Miller MA, Liu Y, Bentley RT, Dey M (2018) Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas. J Neurooncol 137:469–479

    Article  CAS  Google Scholar 

  • Fong B, Jin R, Wang X, Safaee M, Lisiero DN, Yang I, Li G, Liau LM, Prins RM (2012) Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS ONE 7:e32614

    Article  CAS  Google Scholar 

  • Fovet CM, Stimmer L, Contreras V, Horellou P, Hubert A, Seddiki N, Chapon C, Tricot S, Leroy C, Flament J, Massonneau J, Tchitchek N, ’t Hart BA, Zurawski S, Klucar P, Hantraye P, Deiva K, Zurawski G, Oh S, Le Grand R, Serguera C, (2019) Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques. EBioMedicine 47:492–505

    Article  Google Scholar 

  • Fu Y, Zhan X, Wang Y, Jiang X, Liu M, Yang Y, Huang Y, Du X, Zhong XP, Li L, Ma L, Hu S (2019) NLRC3 expression in dendritic cells attenuates CD4(+) T cell response and autoimmunity. EMBO J 38:e101397

    Article  Google Scholar 

  • Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B (2017) Immune microenvironment of gliomas. Lab Invest 97:498–518

    Article  CAS  Google Scholar 

  • González H, Contreras F, Pacheco R (2015) Regulation of the Neurodegenerative Process Associated to Parkinson’s Disease by CD4+ T-cells. J Neuroimmune Pharmacol 10:561–575

    Article  Google Scholar 

  • Gorentla BK, Krishna S, Shin J, Inoue M, Shinohara ML, Grayson JM, Fukunaga R, Zhong XP (2013) Mnk1 and 2 are dispensable for T cell development and activation but important for the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 190:1026–1037

    Article  CAS  Google Scholar 

  • Han R, Luo J, Shi Y, Yao Y, Hao J (2017) PD-L1 (Programmed Death Ligand 1) Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury. Stroke 48:2255–2262

    Article  CAS  Google Scholar 

  • Hanihara M, Kawataki T, Oh-Oka K, Mitsuka K, Nakao A, Kinouchi H (2016) Synergistic antitumor effect with indoleamine 2,3-dioxygenase inhibition and temozolomide in a murine glioma model. J Neurosurg 124:1594–1601

    Article  CAS  Google Scholar 

  • Haupeltshofer S, Leichsenring T, Berg S, Pedreiturria X, Joachim SC, Tischoff I, Otte JM, Bopp T, Fantini MC, Esser C, Willbold D, Gold R, Faissner S, Kleiter I (2019) Smad7 in intestinal CD4(+) T cells determines autoimmunity in a spontaneous model of multiple sclerosis. Proc Natl Acad Sci USA 116:25860–25869

    Article  CAS  Google Scholar 

  • He Z, Tang Y, Qin C (2017) Increased circulating leukocyte-derived microparticles in ischemic cerebrovascular disease. Thromb Res 154:19–25

    Article  CAS  Google Scholar 

  • Hernandez-Mir G, Raphael I, Revu S, Poholek CH, Avery L, Hawse WF, Kane LP, McGeachy MJ (2019) The Alzheimer’s Disease-Associated Protein BACE1 Modulates T Cell Activation and Th17 Function. J Immunol 203:665–675

    Article  CAS  Google Scholar 

  • Hill EV, Ng TH, Burton BR, Oakley CM, Malik K, Wraith DC (2015) Glycogen synthase kinase-3 controls IL-10 expression in CD4(+) effector T-cell subsets through epigenetic modification of the IL-10 promoter. Eur J Immunol 45:1103–1115

    Article  CAS  Google Scholar 

  • Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci USA 102:6449–6454

    Article  CAS  Google Scholar 

  • Hunn MK, Farrand KJ, Broadley KW, Weinkove R, Ferguson P, Miller RJ, Field CS, Petersen T, McConnell MJ, Hermans IF (2012) Vaccination with irradiated tumor cells pulsed with an adjuvant that stimulates NKT cells is an effective treatment for glioma. Clin Cancer Res 18:6446–6459

    Article  CAS  Google Scholar 

  • Iwasaki A (2017) Immune Regulation of Antibody Access to Neuronal Tissues. Trends Mol Med 23:227–245

    Article  CAS  Google Scholar 

  • Jahan N, Talat H, Curry WT (2018) Agonist OX40 immunotherapy improves survival in glioma-bearing mice and is complementary with vaccination with irradiated GM-CSF-expressing tumor cells. Neuro Oncol 20:44–54

    Article  CAS  Google Scholar 

  • Jiang Y, Zou Y, Chen S, Zhu C, Wu A, Liu Y, Ma L, Zhu D, Ma X, Liu M, Kang Z, Pi R, Peng F, Wang Q, Chen X (2013) The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57 BL/6 mice. Neuropharmacology 73:415–424

    Article  CAS  Google Scholar 

  • Kasagi S, Wang D, Zhang P, Zanvit P, Chen H, Zhang D, Li J, Che L, Maruyama T, Nakatsukasa H, Wu R, Jin W, Sun L, Chen W (2019) Combination of apoptotic T cell induction and self-peptide administration for therapy of experimental autoimmune encephalomyelitis. EBioMedicine 44:50–59

    Article  Google Scholar 

  • Kim HJ, Cantor H (2019) Regulatory T cells subdue an autoimmune disease. Nature 572(7770):443–445

    Article  CAS  Google Scholar 

  • Kim TG, Kim CH, Park JS, Park SD, Kim CK, Chung DS, Hong YK (2010) Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol 17:143–153

    Article  CAS  Google Scholar 

  • Kubick N, Flournoy P, Enciu AM, Manda G, Mickael ME (2020) Drugs Modulating CD4+ T Cells Blood-Brain Barrier Interaction in Alzheimer's Disease. Pharmaceutics 12:880

  • Kubo M, Nagashima R, Kurihara M, Kawakami F, Maekawa T, Eshima K, Ohta E, Kato H, Obata F (2020) Leucine-Rich Repeat Kinase 2 Controls Inflammatory Cytokines Production through NF-κB Phosphorylation and Antigen Presentation in Bone Marrow-Derived Dendritic Cells. Int J Mol Sci 21:1890

  • Kühnöl C, Herbarth M, Föll J, Staege MS, Kramm C (2013) CD137 stimulation and p38 MAPK inhibition improve reactivity in an in vitro model of glioblastoma immunotherapy. Cancer Immunol Immunother 62:1797–1809

    Article  Google Scholar 

  • Labrador-Garrido A, Cejudo-Guillén M, Klippstein R, De Genst EJ, Tomas-Gallardo L, Leal MM, Villadiego J, Toledo-Aral JJ, Dobson CM, Pozo D, Roodveldt C (2014) Chaperoned amyloid proteins for immune manipulation: α-Synuclein/Hsp70 shifts immunity toward a modulatory phenotype. Immun Inflamm Dis 2:226–238

    Article  CAS  Google Scholar 

  • Leavenworth JW, Schellack C, Kim HJ, Lu L, Spee P, Cantor H (2010) Analysis of the cellular mechanism underlying inhibition of EAE after treatment with anti-NKG2A F(ab’)2. Proc Natl Acad Sci USA 107:2562–2567

    Article  CAS  Google Scholar 

  • Lee PW, Yang Y, Racke MK, Lovett-Racke AE (2015) Analysis of TGF-β1 and TGF-β3 as regulators of encephalitogenic Th17 cells: Implications for multiple sclerosis. Brain Behav Immun 46:44–49

    Article  CAS  Google Scholar 

  • Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, Ma RY, Liao NS (2018) Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 73:562–570

    Article  CAS  Google Scholar 

  • Lei JJ, Li HQ, Mo ZH, Liu KJ, Zhu LJ, Li CY, Chen WL, Zhang L (2019) Long noncoding RNA CDKN2B-AS1 interacts with transcription factor BCL11A to regulate progression of cerebral infarction through mediating MAP4K1 transcription. FASEB J 33:7037–7048

    Article  CAS  Google Scholar 

  • Li J, Tan J, Martino MM, Lui KO (2018) Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front Immunol 9:585

    Article  Google Scholar 

  • Lindestam Arlehamn CS, Pham J, Alcalay RN, Frazier A, Shorr E, Carpenter C, Sidney J, Dhanwani R, Agin-Liebes J, Garretti F, Amara AW, Standaert DG, Phillips EJ, Mallal SA, Peters B, Sulzer D, Sette A (2019) Widespread Tau-Specific CD4 T Cell Reactivity in the General Population. J Immunol 203:84–92

    Article  Google Scholar 

  • Liu Z, Huang Y, Cao BB, Qiu YH, Peng YP (2017) Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson’s Disease. Mol Neurobiol 54:7762–7776

    Article  CAS  Google Scholar 

  • Lopes A, Bastiancich C, Bausart M, Ligot S, Lambricht L, Vanvarenberg K, Ucakar B, Gallez B, Préat V, Vandermeulen G (2021) New generation of DNA-based immunotherapy induces a potent immune response and increases the survival in different tumor models. J Immunother Cancer 9:e001243

  • Lutz MB (2016) Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Netw 16:13–25

    Article  Google Scholar 

  • MacPherson KP, Sompol P, Kannarkat GT, Chang J, Sniffen L, Wildner ME, Norris CM, Tansey MG (2017) Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol Dis 102:81–95

    Article  CAS  Google Scholar 

  • Manocha G, Ghatak A, Puig K, Combs C (2018) Anti-α4β1 Integrin Antibodies Attenuated Brain Inflammatory Changes in a Mouse Model of Alzheimer’s Disease. Curr Alzheimer Res 15:1123–1135

    Article  CAS  Google Scholar 

  • Marusina AI, Ono Y, Merleev AA, Shimoda M, Ogawa H, Wang EA, Kondo K, Olney L, Luxardi G, Miyamura Y, Yilma TD, Villalobos IB, Bergstrom JW, Kronenberg DG, Soulika AM, Adamopoulos IE, Maverakis E (2017) CD4(+) virtual memory: Antigen-inexperienced T cells reside in the naïve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity. J Autoimmun 77:76–88

    Article  CAS  Google Scholar 

  • McDonald CA, Penny TR, Paton M, Sutherland AE, Nekkanti L, Yawno T, Castillo-Melendez M, Fahey MC, Jones NM, Jenkin G, Miller SL (2018) Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury. J Neuroinflammation 15:47

    Article  Google Scholar 

  • Moraes AS, Paula RF, Pradella F, Santos MP, Oliveira EC, von Glehn F, Camilo DS, Ceragioli H, Peterlevitz A, Baranauskas V, Volpini W, Farias AS, Santos LM (2013) The suppressive effect of IL-27 on encephalitogenic Th17 cells induced by multiwalled carbon nanotubes reduces the severity of experimental autoimmune encephalomyelitis. CNS Neurosci Ther 19:682–687

    Article  CAS  Google Scholar 

  • Mu L, Yang C, Gao Q, Long Y, Ge H, DeLeon G, Jin L, Chang YE, Sayour EJ, Ji J, Jiang J, Kubilis PS, Qi J, Gu Y, Wang J, Song Y, Mitchell DA, Lin Z, Huang J (2017) CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression. Front Immunol 8:1451

    Article  Google Scholar 

  • Mundt S, Greter M, Flügel A, Becher B (2019) The CNS Immune Landscape from the Viewpoint of a T Cell. Trends Neurosci 42:667–679

    Article  CAS  Google Scholar 

  • Murphy KA, Lechner MG, Popescu FE, Bedi J, Decker SA, Hu P, Erickson JR, O’Sullivan MG, Swier L, Salazar AM, Olin MR, Epstein AL, Ohlfest JR (2012) An in vivo immunotherapy screen of costimulatory molecules identifies Fc-OX40L as a potent reagent for the treatment of established murine gliomas. Clin Cancer Res 18:4657–4668

    Article  CAS  Google Scholar 

  • Nizri E, Irony-Tur-Sinai M, Faranesh N, Lavon I, Lavi E, Weinstock M, Brenner T (2008) Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J Neuroimmunol 203:12–22

    Article  CAS  Google Scholar 

  • Olson KE, Kosloski-Bilek LM, Anderson KM, Diggs BJ, Clark BE, Gledhill JM Jr, Shandler SJ, Mosley RL, Gendelman HE (2015) Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice. J Neurosci 35:16463–16478

    Article  CAS  Google Scholar 

  • Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357:1777–1789

    Article  CAS  Google Scholar 

  • Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD, Theys T, Mancuso R, Tito RY, Kouser L, Callaerts-Vegh Z, de la Fuente AG, Prezzemolo T, Mascali LG, Brajic A, Whyte CE, Yshii L, Martinez-Muriana A, Naughton M, Young A, Moudra A, Lemaitre P, Poovathingal S, Raes J, De Strooper B, Fitzgerald DC, Dooley J, Liston A (2020) Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell 182:625-640.e24

    Article  CAS  Google Scholar 

  • Pietronigro E, Zenaro E, Bianca VD, Dusi S, Terrabuio E, Iannoto G, Slanzi A, Ghasemi S, Nagarajan R, Piacentino G, Tosadori G, Rossi B, Constantin G (2019) Blockade of α4 integrins reduces leukocyte-endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer’s disease. Sci Rep 9:12055

    Article  Google Scholar 

  • Pilipović I, Vujnović I, Stojić-Vukanić Z, Petrović R, Kosec D, Nacka-Aleksić M, Jasnić N, Leposavić G (2019) Noradrenaline modulates CD4+ T cell priming in rat experimental autoimmune encephalomyelitis: a role for the α(1)-adrenoceptor. Immunol Res 67:223–240

    Article  Google Scholar 

  • Qiao J, Dey M, Chang AL, Kim JW, Miska J, Ling A, Nettlebeck DM, Han Y, Zhang L, Lesniak MS (2015) Intratumoral oncolytic adenoviral treatment modulates the glioma microenvironment and facilitates systemic tumor-antigen-specific T cell therapy. Oncoimmunology 4:e1022302

    Article  Google Scholar 

  • Qin H, Buckley JA, Li X, Liu Y, Fox TH 3rd, Meares GP, Yu H, Yan Z, Harms AS, Li Y, Standaert DG, Benveniste EN (2016) Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. J Neurosci 36:5144–5159

    Article  CAS  Google Scholar 

  • Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635

    Article  CAS  Google Scholar 

  • Renner K, Hellerbrand S, Hermann F, Riedhammer C, Talke Y, Schiechl G, Rodriguez Gomez M, Kutzi S, Halbritter D, Goebel N, Brühl H, Weissert R, Mack M (2016) IL-3 promotes the development of experimental autoimmune encephalitis. JCI Insight 1:e87157

    Article  Google Scholar 

  • Rockenstein E, Ostroff G, Dikengil F, Rus F, Mante M, Florio J, Adame A, Trinh I, Kim C, Overk C, Masliah E, Rissman RA (2018) Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies. J Neurosci 38:1000–1014

    Article  CAS  Google Scholar 

  • Rosset MB, Lui G, Dansokho C, Chaigneau T, Dorothée G (2015) Vaccine-induced Aβ-specific CD8+ T cells do not trigger autoimmune neuroinflammation in a murine model of Alzheimer’s disease. J Neuroinflammation 12:95

    Article  Google Scholar 

  • Rostami A, Ciric B (2013) Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci 333:76–87

    Article  CAS  Google Scholar 

  • Saka M, Amano T, Kajiwara K, Yoshikawa K, Ideguchi M, Nomura S, Fujisawa H, Kato S, Fujii M, Ueno K, Hinoda Y, Suzuki M (2010) Vaccine therapy with dendritic cells transfected with Il13ra2 mRNA for glioma in mice. J Neurosurg 113:270–279

    Article  CAS  Google Scholar 

  • Salvador AF, de Lima KA, Kipnis J (2021) Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 21:526–541

    Article  CAS  Google Scholar 

  • Samantaray S, Knaryan VH, Shields DC, Cox AA, Haque A, Banik NL (2015) Inhibition of Calpain Activation Protects MPTP-Induced Nigral and Spinal Cord Neurodegeneration, Reduces Inflammation, and Improves Gait Dynamics in Mice. Mol Neurobiol 52:1054–1066

    Article  CAS  Google Scholar 

  • Samson M, Corbera-Bellalta M, Audia S, Planas-Rigol E, Martin L, Cid MC, Bonnotte B (2017) Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev 16:833–844

    Article  CAS  Google Scholar 

  • Sanchez-Guajardo V, Annibali A, Jensen PH, Romero-Ramos M (2013) α-Synuclein vaccination prevents the accumulation of parkinson disease-like pathologic inclusions in striatum in association with regulatory T cell recruitment in a rat model. J Neuropathol Exp Neurol 72:624–645

    Article  CAS  Google Scholar 

  • Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, Sampson JH, Mitchell DA (2015) Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother 64:419–427

    Article  CAS  Google Scholar 

  • Schreiner D, King CG (2018) CD4+ Memory T Cells at Home in the Tissue: Mechanisms for Health and Disease. Front Immunol 9:2394

    Article  Google Scholar 

  • Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, Menn O, Osswald M, Oezen I, Ott M, Keil M, Balß J, Rauschenbach K, Grabowska AK, Vogler I, Diekmann J, Trautwein N, Eichmüller SB, Okun J, Stevanović S, Riemer AB, Sahin U, Friese MA, Beckhove P, von Deimling A, Wick W, Platten M (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327

    Article  CAS  Google Scholar 

  • Seo J, Park J, Kim K, Won J, Yeo HG, Jin YB, Koo BS, Lim KS, Jeong KJ, Kang P, Lee HY, Choi WS, Baek SH, Jeon CY, Hong JJ, Huh JW, Kim YH, Park SJ, Kim SU, Lee DS, Lee SR, Lee Y (2020) Chronic Infiltration of T Lymphocytes into the Brain in a Non-human Primate Model of Parkinson’s Disease. Neuroscience 431:73–85

    Article  CAS  Google Scholar 

  • Singh I, Nath N, Saxena N, Singh AK, Won JS (2018) Regulation of IL-10 and IL-17 mediated experimental autoimmune encephalomyelitis by S-nitrosoglutathione. Immunobiology 223:549–554

    Article  CAS  Google Scholar 

  • Smith KE, Fritzell S, Badn W, Eberstål S, Janelidze S, Visse E, Darabi A, Siesjö P (2009) Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 124:630–637

    Article  CAS  Google Scholar 

  • Smith RC, O’Bryan LM, Mitchell PJ, Leung D, Ghanem M, Wilson JM, Hanson JC, Sossick S, Cooper J, Huang L, Merchant KM, Lu J, O’Neill MJ (2015) Increased brain bio-distribution and chemical stability and decreased immunogenicity of an engineered variant of GDNF. Exp Neurol 267:165–176

    Article  CAS  Google Scholar 

  • Solleiro-Villavicencio H, Rivas-Arancibia S (2018) Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4(+)T Cells in Neurodegenerative Diseases. Front Cell Neurosci 12:114

    Article  Google Scholar 

  • Soskic B, Cano-Gamez E, Smyth DJ, Rowan WC, Nakic N, Esparza-Gordillo J, Bossini-Castillo L, Tough DF, Larminie C, Bronson PG, Willé D, Trynka G (2019) Chromatin activity at GWAS loci identifies T cell states driving complex immune diseases. Nat Genet 51:1486–1493

    Article  CAS  Google Scholar 

  • Sun S, Du G, Xue J, Ma J, Ge M, Wang H, Tian J (2018) PCC0208009 enhances the anti-tumor effects of temozolomide through direct inhibition and transcriptional regulation of indoleamine 2,3-dioxygenase in glioma models. Int J Immunopathol Pharmacol 32:2058738418787991

    Article  Google Scholar 

  • Sungnak W, Wang C, Kuchroo VK (2019) Multilayer regulation of CD4 T cell subset differentiation in the era of single cell genomics. Adv Immunol 141:1–31

    Article  CAS  Google Scholar 

  • Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M (2020) Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 70:299–312

    Article  Google Scholar 

  • Thakur P, Breger LS, Lundblad M, Wan OW, Mattsson B, Luk KC, Lee V, Trojanowski JQ, Björklund A (2017) Modeling Parkinson’s disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain. Proc Natl Acad Sci USA 114:E8284–E8293

    Article  CAS  Google Scholar 

  • Thomas AA, Fisher JL, Hampton TH, Christensen BC, Tsongalis GJ, Rahme GJ, Whipple CA, Steel SE, Davis MC, Gaur AB, Lewis LD, Ernstoff MS, Fadul CE (2017) Immune modulation associated with vascular endothelial growth factor (VEGF) blockade in patients with glioblastoma. Cancer Immunol Immunother 66:379–389

    Article  CAS  Google Scholar 

  • Tian J, Dang H, Wallner M, Olsen R, Kaufman DL (2018) Homotaurine, a safe blood-brain barrier permeable GABA(A)-R-specific agonist, ameliorates disease in mouse models of multiple sclerosis. Sci Rep 8:16555

    Article  Google Scholar 

  • Vella LA, Herati RS, Wherry EJ (2017) CD4(+) T Cell Differentiation in Chronic Viral Infections: The Tfh Perspective. Trends Mol Med 23:1072–1087

    Article  CAS  Google Scholar 

  • Vidyarthi A, Agnihotri T, Khan N, Singh S, Tewari MK, Radotra BD, Chatterjee D, Agrewala JN (2019) Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity. Cancer Immunol Immunother 68:1995–2004

    Article  CAS  Google Scholar 

  • Wang X, Zhou Y, Tang D, Zhu Z, Li Y, Huang T, Müller R, Yu W, Li P (2019) ACC1 (Acetyl Coenzyme A Carboxylase 1) Is a Potential Immune Modulatory Target of Cerebral Ischemic Stroke. Stroke 50:1869–1878

    Article  CAS  Google Scholar 

  • Watanabe R, Hosgur E, Zhang H, Wen Z, Berry G, Goronzy JJ, Weyand CM (2017a) Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis. Joint Bone Spine 84:421–426

    Article  CAS  Google Scholar 

  • Watanabe R, Zhang H, Berry G, Goronzy JJ, Weyand CM (2017b) Immune checkpoint dysfunction in large and medium vessel vasculitis. Am J Physiol Heart Circ Physiol 312:H1052–H1059

    Article  Google Scholar 

  • Weiss T, Puca E, Silginer M, Hemmerle T, Pazahr S, Bink A, Weller M, Neri D, Roth P (2020) Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci Transl Med 12:eabb2311

  • Williams GP, Schonhoff AM, Jurkuvenaite A, Gallups NJ, Standaert DG, Harms AS (2021) CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 144:2047–2059

    Article  Google Scholar 

  • Wu A, Maxwell R, Xia Y, Cardarelli P, Oyasu M, Belcaid Z, Kim E, Hung A, Luksik AS, Garzon-Muvdi T, Jackson CM, Mathios D, Theodros D, Cogswell J, Brem H, Pardoll DM, Lim M (2019) Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J Neurooncol 143:241–249

    Article  CAS  Google Scholar 

  • Xie L, Li W, Hersh J, Liu R, Yang SH (2019) Experimental ischemic stroke induces long-term T cell activation in the brain. J Cereb Blood Flow Metab 39:2268–2276

    Article  CAS  Google Scholar 

  • Yang L, Kong Y, Ren H, Li M, Wei CJ, Shi E, Jin WN, Hao J, Vandenbark AA, Offner H (2017) Upregulation of CD74 and its potential association with disease severity in subjects with ischemic stroke. Neurochem Int 107:148–155

    Article  CAS  Google Scholar 

  • Yi H, Guo C, Yu X, Zuo D, Wang XY (2012) Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol 189:4295–4304

    Article  CAS  Google Scholar 

  • Zhang J, Braun MY (2014) PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice. Int Immunol 26:407–415

    Article  CAS  Google Scholar 

  • Zhang F, Wei W, Chai H, Xie X (2013) Aurintricarboxylic acid ameliorates experimental autoimmune encephalomyelitis by blocking chemokine-mediated pathogenic cell migration and infiltration. J Immunol 190:1017–1025

    Article  CAS  Google Scholar 

  • Zhang H, Watanabe R, Berry GJ, Vaglio A, Liao YJ, Warrington KJ, Goronzy JJ, Weyand CM (2017) Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc Natl Acad Sci USA 114:E970–E979

    CAS  Google Scholar 

  • Zhang H, Watanabe R, Berry GJ, Tian L, Goronzy JJ, Weyand CM (2018) Inhibition of JAK-STAT Signaling Suppresses Pathogenic Immune Responses in Medium and Large Vessel Vasculitis. Circulation 137:1934–1948

    Article  CAS  Google Scholar 

  • Zhang H, Watanabe R, Berry GJ, Nadler SG, Goronzy JJ, Weyand CM (2019) CD28 Signaling Controls Metabolic Fitness of Pathogenic T Cells in Medium and Large Vessel Vasculitis. J Am Coll Cardiol 73:1811–1823

    Article  CAS  Google Scholar 

  • Zhang X, Ge R, Chen H, Ahiafor M, Liu B, Chen J, Fan X (2021) Follicular Helper CD4(+) T Cells, Follicular Regulatory CD4(+) T Cells, and Inducible Costimulator and Their Roles in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2021:2058964

    Article  Google Scholar 

  • Zhao J, Zhao J, Perlman S (2009) De novo recruitment of antigen-experienced and naive T cells contributes to the long-term maintenance of antiviral T cell populations in the persistently infected central nervous system. J Immunol 183:5163–5170

    Article  CAS  Google Scholar 

  • Zhao H, Wan L, Chen Y, Zhang H, Xu Y, Qiu S (2018) FasL incapacitation alleviates CD4(+) T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. J Neuroimmunol 318:36–44

    Article  CAS  Google Scholar 

  • Zhou M, Bracci PM, McCoy LS, Hsuang G, Wiemels JL, Rice T, Zheng S, Kelsey KT, Wrensch MR, Wiencke JK (2015a) Serum macrophage-derived chemokine/CCL22 levels are associated with glioma risk, CD4 T cell lymphopenia and survival time. Int J Cancer 137:826–836

    Article  CAS  Google Scholar 

  • Zhou TT, Zu G, Wang X, Zhang XG, Li S, Liang ZH, Zhao J (2015b) Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) -induced mouse model of Parkinson’s disease. Int Immunopharmacol 29:334–343

    Article  CAS  Google Scholar 

  • Zhou Y, Leng X, Luo S, Su Z, Luo X, Guo H, Mo C, Zou Q, Liu Y, Wang Y (2016) Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance. J Immunol Res 2016:5021537

    Article  Google Scholar 

  • Zhou Y, Shi X, Chen H, Zhang S, Salker MS, Mack AF, Föller M, Mak TW, Singh Y, Lang F (2017) DJ-1/Park7 Sensitive Na(+) /H(+) Exchanger 1 (NHE1) in CD4(+) T Cells. J Cell Physiol 232:3050–3059

    Article  CAS  Google Scholar 

  • Zhu J (2018) T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harb Perspect Biol 10

  • Zilkha-Falb R, Gurevich M, Achiron A (2017) Experimental Autoimmune Encephalomyelitis Ameliorated by Passive Transfer of Polymerase 1-Silenced MOG35-55 Lymphatic Node Cells: Verification of a Novel Therapeutic Approach in Multiple Sclerosis. Neuromolecular Med 19:406–412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China [81202924, 81773909, 81703711]; The combination of medical care and health project of Shanghai University of Traditional Chinese Medicine [YYKC-2021-01-008] and Shanghai talent development funds[201665].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Liu or Kaili Hu.

Ethics declarations

Declaration of Interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Nan, Y., Liu, M. et al. The Role of CD4+ T Cells in the Immunotherapy of Brain Disease by Secreting Different Cytokines. J Neuroimmune Pharmacol 17, 409–422 (2022). https://doi.org/10.1007/s11481-022-10056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-022-10056-5

Keywords

Navigation