Skip to main content
Log in

Experimental Autoimmune Encephalomyelitis Ameliorated by Passive Transfer of Polymerase 1-Silenced MOG35-55 Lymphatic Node Cells: Verification of a Novel Therapeutic Approach in Multiple Sclerosis

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

In the current study, we present an innovative concept based on the knowledge that enhancing naturally occurring biological mechanisms is effective in preventing neuronal damage and maintaining low disease activity in about 15% of multiple sclerosis (MS) patients presenting the benign type of MS. Recently, we have demonstrated that low disease activity in benign MS is associated with suppression of RNA polymerase 1 (POL1) pathway; therefore, targeting POL1 transcription machinery as a strategy for suppressing active forms of MS is suggested. To further establish our approach, we aimed to suppress POL1 pathway by silencing of the POL1-related RRN3, POLR1D and LRPPRC genes in specific MOG35-55-activated lymphocytes and assess their capacity to induce experimental autoimmune encephalomyelitis (EAE) by passive transfer. We have demonstrated that silencing of specific POL1 pathway-related genes significantly decreased viability and increased the proportion of CD4+/AnnexinV+/PI+ apoptotic cells in MOG35-55-primed lymphocytes. POL1-gene silencing significantly decreased the proportion of CD4+IL17+ and increased proportion of CD4+IL10+ and CD4+TNFa+ lymphocytes that occurred simultaneously with over-presentation of Treg CD4+CD25+FoxP3+ cells. Passive transfer of MOG35-55-primed lymphocytes after POL1-gene silencing suppressed EAE development in mice as demonstrated by delayed onset and peak of disease accompanied by significantly lower maximal and cumulative EAE scores. Our study supports a basis for direct targeting of POL1 transcription pathway as a strategy for selective induction of apoptosis and suppression of inflammation in EAE and consequently paves the way for innovative and targeted MS therapeutic strategy that is based on naturally existing biological mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

POL1:

Polymerase 1

EAE:

Experimental autoimmune encephalomyelitis

MS:

Multiple sclerosis

RRN3:

RNA polymerase I transcription factor 3

POLR1D:

RNA polymerase I polypeptide D

TNFa:

Tumor necrosis factor alpha

IL-10:

Interleukin 10

IL-4:

Interleukin 4

IL-17:

Interleukin 17

MOG:

Myelin oligodendrocyte glycoprotein

FoxP3:

Forkhead box P3

References

  • Achiron, A., Feldman, A., Magalashvili, D., Dolev, M., & Gurevich, M. (2012). Suppressed RNA-polymerase 1 pathway is associated with benign multiple sclerosis. PLoS ONE, 7(10), e46871. doi:10.1371/journal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achiron, A., Mashiach, R., Zilkha-Falb, R., Meijler, M. M., & Gurevich, M. (2013). Polymerase I pathway inhibitor ameliorates experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 263(1–2), 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Achiron, A., Polliack, M., Rao, S. M., Barak, Y., Lavie, M., Appelboim, N., et al. (2005). Cognitive patterns and progression in multiple sclerosis: Construction and validation of percentile curves. Journal of Neurology, Neurosurgery and Psychiatry, 76(5), 744–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achiron, A., Zilkha-Falb, R., Mashiach, R., & Gurevich, M. (2017). RAM-589.555 a new Polymerase-1 inhibitor as innovative targeted-treatment for multiple sclerosis. Journal of Neuroimmunology, 302, 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502–1517.

    Article  CAS  PubMed  Google Scholar 

  • Confavreux, C., & Vukusic, S. (2008). The clinical epidemiology of multiple sclerosis. Neuroimaging Clinics of North America, 18(4), 589–622.

    Article  PubMed  Google Scholar 

  • Donati, G., Bertoni, S., Brighenti, E., Vici, M., Trere, D., Volarevic, S., et al. (2011). The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene, 30(29), 3274–3288.

    Article  CAS  PubMed  Google Scholar 

  • Glad, S. B., Nyland, H. I., Aarseth, J. H., Riise, T., & Myhr, K. M. (2009). Long-term follow-up of benign multiple sclerosis in Hordaland County. Western Norway. Multiple Sclerosis, 15(8), 942–950.

    Article  CAS  PubMed  Google Scholar 

  • Golomb, L., Volarevic, S., & Oren, M. (2014). p53 and ribosome biogenesis stress: the essentials. FEBS Letters, 588(16), 2571–2579.

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow, S. J., & Zomerdijk, J. C. (2013). Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Sub-Cellular Biochemistry, 61, 211–236.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, S. A., & McDonnell, G. V. (1999). Benign multiple sclerosis? Clinical course, long term follow up, and assessment of prognostic factors. Journal of Neurology, Neurosurgery and Psychiatry, 67(2), 148–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruglov, A. A., Lampropoulou, V., Fillatreau, S., & Nedospasov, S. A. (2011). Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. Journal of Immunology, 187(11), 5660–5670.

    Article  CAS  Google Scholar 

  • Moon, Y. (2014). Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation. Mediators of Inflammation, 2014, 708193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittock, S. J., & Rodriguez, M. (2008). Benign multiple sclerosis: a distinct clinical entity with therapeutic implications. Current Topics in Microbiology and Immunology, 318, 1–17.

    CAS  PubMed  Google Scholar 

  • Poser, S., Wikstrom, J., & Bauer, H. J. (1979). Clinical data and the identification of special forms of multiple sclerosis in 1271 cases studied with a standardized documentation system. Journal of the Neurological Sciences, 40(2–3), 159–168.

    Article  CAS  PubMed  Google Scholar 

  • Ramsaransing, G. S., & De Keyser, J. (2007). Predictive value of clinical characteristics for ‘benign’ multiple sclerosis. European Journal of Neurology, 14(8), 885–889.

    Article  CAS  PubMed  Google Scholar 

  • Stepanchick, A., Zhi, H., Cavanaugh, A. H., Rothblum, K., Schneider, D. A., & Rothblum, L. I. (2013). DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription. Journal of Biological Chemistry, 288(13), 9135–9144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, X., Zhou, Y., Casanova, E., Chai, M., Kiss, E., Grone, H. J., et al. (2005). Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Molecular Cell, 19(1), 77–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Network of Excellence in Neuroscience—Israel (NNE)—2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gurevich.

Ethics declarations

Conflict of interest

The authors have no financial or other relationship that may be perceived as a conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zilkha-Falb, R., Gurevich, M. & Achiron, A. Experimental Autoimmune Encephalomyelitis Ameliorated by Passive Transfer of Polymerase 1-Silenced MOG35-55 Lymphatic Node Cells: Verification of a Novel Therapeutic Approach in Multiple Sclerosis. Neuromol Med 19, 406–412 (2017). https://doi.org/10.1007/s12017-017-8456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-017-8456-8

Keywords

Navigation