Skip to main content

Advertisement

Log in

Immune modulation associated with vascular endothelial growth factor (VEGF) blockade in patients with glioblastoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Vascular endothelial growth factor (VEGF), in addition to being pro-angiogenic, is an immunomodulatory cytokine systemically and in the tumor microenvironment. We previously reported the immunomodulatory effects of radiation and temozolomide (TMZ) in newly diagnosed glioblastoma. This study aimed to assess changes in peripheral blood mononuclear cell (PBMC) populations, plasma cytokines, and growth factor concentrations following treatment with radiation, TMZ, and bevacizumab (BEV).

Methods

Eleven patients with newly diagnosed glioblastoma were treated with radiation, TMZ, and BEV, following surgery. We measured immune-related PBMC subsets using multi-parameter flow cytometry and plasma cytokine and growth factor concentrations using electrochemiluminescence-based multiplex analysis at baseline and after 6 weeks of treatment.

Results

The absolute number of peripheral blood regulatory T cells (Tregs) decreased significantly following treatment. The lower number of peripheral Tregs was associated with a CD4+ lymphopenia, and thus, the ratio of Tregs to PBMCs was unchanged. The addition of bevacizumab to standard radiation and temozolomide led to the decrease in the number of circulating Tregs when compared with our prior study. There was a significant decrease in CD8+ cytotoxic and CD4+ recent thymic emigrant T cells, but no change in the number of myeloid-derived suppressor cells. Significant increases in plasma VEGF and placental growth factor (PlGF) concentrations were observed.

Conclusions

Treatment with radiation, TMZ, and BEV decreased the number but not the proportion of peripheral Tregs and increased the concentration of circulating VEGF. This shift in the peripheral immune cell profile may modulate the tumor environment and have implications for combining immunotherapy with anti-angiogenic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACD:

Acid, citrate, dextrose

BEV:

Bevacizumab

bFGF:

Beta-fibroblast growth factor

CBC:

Complete blood count

CD:

Cluster of differentiation

CTCAE:

Common terminology criteria for adverse events

CTEP:

Cancer therapy evaluation program

DC:

Dendritic cell

FDA:

Federal Drug Administration

FOXP3:

Forkhead box P3

GMCSF:

Granulocyte–monocyte colony-stimulating factor

HIF:

Hypoxia-inducible factor

HLA:

Human leukocyte antigen

IgG:

Immunoglobulin G

IL:

Interleukin

KPS:

Karnofsky performance scale

L/D:

Live/dead

MDSC:

Myeloid-derived suppressor cell

MSD:

MESO Scale Discovery

NCI:

National Cancer Institute

OS:

Overall survival

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate buffered saline

PFS:

Progression-free survival

PlGF:

Placental growth factor

RT:

Radiation therapy

SDF-1α:

Stromal cell-derived factor 1-alpha

sFlt-1:

Soluble fms-like tyrosine kinase 1

STAT3:

Signal transducer and activator of transcription

TMZ:

Temozolomide

TNFα:

Tumor necrosis factor alpha

Tregs:

Regulatory T cells

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Fadul CE, Fisher JL, Gui J, Hampton TH, Cote AL, Ernstoff MS (2011) Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro Oncol 13(4):393–400. doi:10.1093/neuonc/noq204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, Lamszus K (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84(1):10–18

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi S (2011) Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol Pharm Bull 34(12):1785–1788

    Article  CAS  PubMed  Google Scholar 

  4. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, Latreche S, Bergaya S, Benhamouda N, Tanchot C, Stockmann C, Combe P, Berger A, Zinzindohoue F, Yagita H, Tartour E, Taieb J, Terme M (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+T cells in tumors. J Exp Med 212(2):139–148. doi:10.1084/jem.20140559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Voron T, Marcheteau E, Pernot S, Colussi O, Tartour E, Taieb J, Terme M (2014) Control of the immune response by pro-angiogenic factors. Front Oncol 4:70. doi:10.3389/fonc.2014.00070

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alfaro C, Suarez N, Gonzalez A, Solano S, Erro L, Dubrot J, Palazon A, Hervas-Stubbs S, Gurpide A, Lopez-Picazo JM, Grande-Pulido E, Melero I, Perez-Gracia JL (2009) Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br J Cancer 100(7):1111–1119. doi:10.1038/sj.bjc.6604965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51(6):293–298. doi:10.1007/s00262-002-0280-8

    Article  CAS  PubMed  Google Scholar 

  8. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101(12):4878–4886. doi:10.1182/blood-2002-07-1956

    Article  CAS  PubMed  Google Scholar 

  9. Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA (2008) The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 57(8):1115–1124. doi:10.1007/s00262-007-0441-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn LL, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109(43):17561–17566. doi:10.1073/pnas.1215397109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J (2013) VEGFA–VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73(2):539–549. doi:10.1158/0008-5472.CAN-12-2325

    Article  CAS  PubMed  Google Scholar 

  12. Terme M, Tartour E, Taieb J (2013) VEGFA/VEGFR2-targeted therapies prevent the VEGFA-induced proliferation of regulatory T cells in cancer. Oncoimmunology 2(8):e25156. doi:10.4161/onci.25156

    Article  PubMed  PubMed Central  Google Scholar 

  13. McCarthy KF, Connor TJ, McCrory C (2013) Cerebrospinal fluid levels of vascular endothelial growth factor correlate with reported pain and are reduced by spinal cord stimulation in patients with failed back surgery syndrome. Neuromodulation 16(6):519–522. doi:10.1111/j.1525-1403.2012.00527.x discussion 522

    Article  PubMed  Google Scholar 

  14. Adotevi O, Pere H, Ravel P, Haicheur N, Badoual C, Merillon N, Medioni J, Peyrard S, Roncelin S, Verkarre V, Mejean A, Fridman WH, Oudard S, Tartour E (2010) A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J Immunother 33(9):991–998. doi:10.1097/CJI.0b013e3181f4c208

    Article  CAS  PubMed  Google Scholar 

  15. Kujawski M, Zhang C, Herrmann A, Reckamp K, Scuto A, Jensen M, Deng J, Forman S, Figlin R, Yu H (2010) Targeting STAT3 in adoptively transferred T cells promotes their in vivo expansion and antitumor effects. Cancer Res 70(23):9599–9610. doi:10.1158/0008-5472.CAN-10-1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, Piantadosi S (2011) Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 17(16):5473–5480. doi:10.1158/1078-0432.CCR-11-0774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560. doi:10.1158/0008-5472.CAN-08-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, Koup RA (2003) Sensitive and viable identification of antigen-specific CD8+T cells by a flow cytometric assay for degranulation. J Immunol Methods 281(1–2):65–78

    Article  CAS  PubMed  Google Scholar 

  19. Kohler S, Thiel A (2009) Life after the thymus: CD31+ and CD31− human naive CD4+T-cell subsets. Blood 113(4):769–774. doi:10.1182/blood-2008-02-139154

    Article  CAS  PubMed  Google Scholar 

  20. Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, Batchelor TT, Sorensen AG (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6(6):327–338. doi:10.1038/nrclinonc.2009.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Segerstrom L, Fuchs D, Backman U, Holmquist K, Christofferson R, Azarbayjani F (2006) The anti-VEGF antibody bevacizumab potently reduces the growth rate of high-risk neuroblastoma xenografts. Pediatr Res 60(5):576–581. doi:10.1203/01.pdr.0000242494.94000.52

    Article  PubMed  Google Scholar 

  22. Ramcharan KS, Lip GY, Stonelake PS, Blann AD (2014) Effect of standard chemotherapy and antiangiogenic therapy on plasma markers and endothelial cells in colorectal cancer. Br J Cancer 111(9):1742–1749. doi:10.1038/bjc.2014.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, Kozin SV, Petit L, Jain RK, Chung DC, Sahani DV, Kalva SP, Cohen KS, Scadden DT, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Shellito PC, Mino-Kenudson M, Lauwers GY (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23(31):8136–8139. doi:10.1200/JCO.2005.02.5635

    Article  PubMed  Google Scholar 

  24. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–434. doi:10.1056/NEJMoa021491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, Mason W, Mikkelsen T, Phuphanich S, Ashby LS, Degroot J, Gattamaneni R, Cher L, Rosenthal M, Payer F, Jurgensmeier JM, Jain RK, Sorensen AG, Xu J, Liu Q, van den Bent M (2013) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 31(26):3212–3218. doi:10.1200/JCO.2012.47.2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M, Ancukiewicz M, Polaskova P, Pinho MC, Jennings D, Plotkin SR, Chi AS, Eichler AF, Dietrich J, Hochberg FH, Lu-Emerson C, Iafrate AJ, Ivy SP, Rosen BR, Loeffler JS, Wen PY, Sorensen AG, Jain RK (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110(47):19059–19064. doi:10.1073/pnas.1318022110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, Shellito P, Czito BG, Wong TZ, Paulson E, Poleski M, Vujaskovic Z, Bentley R, Chen HX, Clark JW, Jain RK (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026. doi:10.1200/JCO.2008.21.1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stefanini MO, Wu FT, Mac Gabhann F, Popel AS (2010) Increase of plasma VEGF after intravenous administration of bevacizumab is predicted by a pharmacokinetic model. Cancer Res 70(23):9886–9894. doi:10.1158/0008-5472.CAN-10-1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hsei V, Deguzman GG, Nixon A, Gaudreault J (2002) Complexation of VEGF with bevacizumab decreases VEGF clearance in rats. Pharm Res 19(11):1753–1756

    Article  CAS  PubMed  Google Scholar 

  30. Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, Italiano JE, Wheatley E, Abou-Slaybi A, Bender E, Almog N, Kieran MW, Folkman J (2009) Platelets actively sequester angiogenesis regulators. Blood 113(12):2835–2842. doi:10.1182/blood-2008-06-159541

    Article  CAS  PubMed  Google Scholar 

  31. Levin VA, Mendelssohn ND, Chan J, Stovall MC, Peak SJ, Yee JL, Hui RL, Chen DM (2015) Impact of bevacizumab administered dose on overall survival of patients with progressive glioblastoma. J Neurooncol 122(1):145–150. doi:10.1007/s11060-014-1693-x

    Article  CAS  PubMed  Google Scholar 

  32. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722. doi:10.1056/NEJMoa1308345

    Article  CAS  PubMed  Google Scholar 

  33. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370(8):699–708. doi:10.1056/NEJMoa1308573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank DartLab: Immunoassay and Flow Cytometry Shared Resource at The Norris Cotton Cancer Center and Geisel School of Medicine at Dartmouth, for the use of the MacsQuant10 flow cytometer and the MSD Sector Imager 2400 instrument. The DartLab is supported in part by the National Cancer Institute (NCI, 5 P30 CA023108-36) and the National Institute of General Medical Sciences (NIGMS, 8 P30 GM103415-14) Grants awarded to the Norris Cotton Cancer Center. This work was supported by grants to Camilo Fadul from Genentech and the Norris Cotton Cancer Center Brain Tumor Research Fund. Lionel Lewis was supported in part by the National Cancer Institute (NCI, 5 P30 CA023108-36) and by the National Center for Advancing Translational Sciences (NCATS, U10 CA151662-03) through the National Institutes of Health. Thomas Hampton was supported in part by the National Institutes of Health (NIH, RO1 HL074175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo E. Fadul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A.A., Fisher, J.L., Hampton, T.H. et al. Immune modulation associated with vascular endothelial growth factor (VEGF) blockade in patients with glioblastoma. Cancer Immunol Immunother 66, 379–389 (2017). https://doi.org/10.1007/s00262-016-1941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1941-3

Keywords

Navigation