Skip to main content

Advertisement

Log in

Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson’s Disease

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive movement disorder characterized by neuroinflammation and dopaminergic neurodegeneration in the brain. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces the release of inflammatory mediators from glial cells and neurons. Glia maturation factor (GMF), a brain proinflammatory protein, MPP+ , and mast cell-derived inflammatory mediators induce neurodegeneration which eventually leads to PD. However, the precise mechanisms underlying interaction between glial cells, neurons and mast cells in PD still remain elusive. In the present study, mouse bone marrow-derived mast cells (BMMCs) and mouse fetal brain-derived mixed glia/neurons, astrocytes and neurons were incubated with MPP+, GMF and mast cell-derived inflammatory mediators mouse mast cell protease-6 (MMCP-6), MMCP-7 or tryptase/brain-specific serine protease-4 (tryptase/BSSP-4). Inflammatory mediators released from these cells in the culture medium were quantitated by enzyme-linked immunosorbent assay. Neurodegeneration was quantified by measuring total neurite outgrowth following microtubule-associated protein-2 immunocytochemistry. MPP+-induced significant neurodegeneration with reduced total neurite outgrowth. MPP+induced the release of tryptase/BSSP-4 from the mouse mast cells, and tryptase/BSSP-4 induced chemokine (C-C motif) ligand 2 (CCL2) release from astrocytes and glia/neurons. Overall our results suggest that MPP+, GMF, MMCP-6 or MMCP-7 stimulate glia/neurons, astrocytes or neurons to release CCL2 and matrix metalloproteinase-3. Additionally, CD40L expression is increased in BMMCs after incubation with MPP+ in a co-culture system consisting of BMMCs and glia/neurons. We propose that mast cell interaction with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bennett JL, Blanchet MR, Zhao L, Zbytnuik L, Antignano F, Gold M, Kubes P, McNagny KM (2009) Bone marrow-derived mast cells accumulate in the central nervous system during inflammation but are dispensable for experimental autoimmune encephalomyelitis pathogenesis. J Immunol 182:5507–5514

    Article  CAS  PubMed  Google Scholar 

  • Brahmachari S, Jana A, Pahan K (2009) Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. J Immunol 183:5917–5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikahisa S, Kodama T, Soya A, Sagawa Y, Ishimaru Y, Sei H, Nishino S (2013) Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states. PLoS One 8:e78434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell GS, Amadesi S, Schmidlin F, Bunnett N (2003) Protease-activated receptor 2: activation, signalling and function. Biochem Soc Trans 31:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Dahlin JS, Feinstein R, Bankova LG, Xing W, Shin K, Gurish MF, Hallgren J (2014) Mouse mast cell protease-6 and MHC are involved in the development of experimental asthma. J Immunol 193:4783–4789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S (2016) Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol 54:997–1007

    Article  PubMed  Google Scholar 

  • Frieri M, Kumar K, Boutin A (2015) Role of mast cells in trauma and neuroinflammation in allergy immunology. Ann Allergy Asthma Immunol 115:172–177

    Article  CAS  PubMed  Google Scholar 

  • Grimmig B, Morganti J, Nash K, Bickford PC (2016) Immunomodulators as therapeutic agents in mitigating the progression of Parkinson's disease. Brain Sci 6. https://doi.org/10.3390/brainsci6040041

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40:3107–3112

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Jackson CL, Angelini GD, George SJ (1998) Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 18:1707–1715

    Article  CAS  PubMed  Google Scholar 

  • Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE (2013) Alpha-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 73:155–169

    Article  CAS  PubMed  Google Scholar 

  • Kaplan R, Zaheer A, Jaye M, Lim R (1991) Molecular cloning and expression of biologically active human glia maturation factor-beta. J Neurochem 57:483–490

    Article  CAS  PubMed  Google Scholar 

  • Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A (2013) Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J NeuroImmune Pharmacol 8:643–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempuraj D, Thangavel R, Yang E, Pattani S, Zaheer S, Santillan DA, Santillan MK, Zaheer A (2015) Dopaminergic toxin 1-Methyl-4-Phenylpyridinium, proteins alpha-Synuclein and glia maturation factor activate mast cells and release inflammatory mediators. PLoS One 10:e0135776

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempuraj D, Thangavel R, Fattal R, Pattani S, Yang E, Zaheer S, Santillan DA, Santillan MK, Zaheer A (2016) Mast cells release chemokine CCL2 in response to Parkinsonian toxin 1-Methyl-4-phenyl-Pyridinium (MPP(+)). Neurochem Res 41:1042–1049

    Article  CAS  PubMed  Google Scholar 

  • Khan MM, Kempuraj D, Zaheer S, Zaheer A (2014) Glia maturation factor deficiency suppresses 1-Methyl-4-Phenylpyridinium-induced oxidative stress in astrocytes. J Mol Neurosci 53:590–599

  • Khan MM, Zaheer S, Thangavel R, Patel M, Kempuraj D, Zaheer A (2015) Absence of glia maturation factor protects dopaminergic neurons and improves motor behavior in mouse model of parkinsonism. Neurochem Res 53:590–599

    Google Scholar 

  • Kim DY, Jeoung D, Ro JY (2010) Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol 185:273–283

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Hong GU, Ro JY (2011) Signal pathways in astrocytes activated by cross-talk between of astrocytes and mast cells through CD40-CD40L. J Neuroinflammation 8:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E, Kim HS (2010a) Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185:615–623

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Kim C, Lee SJ (2010b) Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxidative Med Cell Longev 3:283–287

    Article  Google Scholar 

  • Lee EJ, Ko HM, Jeong YH, Park EM, Kim HS (2015) Beta-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia. J Neuroinflammation 12:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zheng Z, Ruan J, Li Z, Tzeng CM (2016) Chronic inflammation links cancer and Parkinson's disease. Front Aging Neurosci 8:126

    PubMed  PubMed Central  Google Scholar 

  • Lim R, Zaheer A (1991) Structure and function of glia maturation factor beta. Adv Exp Med Biol 296:161–164

    Article  CAS  PubMed  Google Scholar 

  • Lim R, Miller JF, Zaheer A (1989) Purification and characterization of glia maturation factor beta: a growth regulator for neurons and glia. Proc Natl Acad Sci U S A 86:3901–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim R, Liu YX, Zaheer A (1990) Cell-surface expression of glia maturation factor beta in astrocytes. FASEB J 4:3360–3363

    Article  CAS  PubMed  Google Scholar 

  • Lim R, Zaheer A, Khosravi H, Freeman JH Jr, Halverson HE, Wemmie JA, Yang B (2004) Impaired motor performance and learning in glia maturation factor-knockout mice. Brain Res 1024:225–232

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wang J, Zhang H, Zhan M, Chen H, Fang Z, Xu C, Chen H, He S (2016) Induction of mast cell accumulation by Tryptase via a protease activated Receptor-2 and ICAM-1 dependent mechanism. Mediat Inflamm 2016:6431574

    Google Scholar 

  • Madrigal JL, Caso JR (2014) The chemokine (C-C motif) ligand 2 in neuroinflammation and neurodegeneration. Adv Exp Med Biol 824:209–219

    Article  CAS  PubMed  Google Scholar 

  • Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH (2001) Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry 50:743–749

    Article  CAS  PubMed  Google Scholar 

  • McKittrick CM, Lawrence CE, Carswell HV (2015) Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 35:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekori YA, Metcalfe DD (2000) Mast cells in innate immunity. Immunol Rev 173:131–140

    Article  CAS  PubMed  Google Scholar 

  • Nelissen S, Lemmens E, Geurts N, Kramer P, Maurer M, Hendriks J, Hendrix S (2013) The role of mast cells in neuroinflammation. Acta Neuropathol 125:637–650

    Article  CAS  PubMed  Google Scholar 

  • Ni WW, Cao MD, Huang W, Meng L, Wei JF (2017) Tryptase inhibitors: a patent review. Expert Opin Ther Pat 27:919–928

    Article  CAS  PubMed  Google Scholar 

  • Ould-yahoui A, Tremblay E, Sbai O, Ferhat L, Bernard A, Charrat E, Gueye Y, Lim NH, Brew K, Risso JJ, Dive V, Khrestchatisky M, Rivera S (2009) A new role for TIMP-1 in modulating neurite outgrowth and morphology of cortical neurons. PLoS One 4:e8289

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Martinez L, Jaworski DM (2005) Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal. J Neurosci 25:4917–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson's disease. Parkinsonism Relat Disord 18(Suppl 1):S207–S209

    Article  PubMed  Google Scholar 

  • Rempe RG, Hartz AM, Bauer B (2016) Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab 36:1481–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronnberg E, Calounova G, Pejler G (2012) Mast cells express tyrosine hydroxylase and store dopamine in a serglycin-dependent manner. Biol Chem 393:107–112

    Article  PubMed  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  CAS  PubMed  Google Scholar 

  • Rothmeier AS, Ruf W (2012) Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 34:133–149

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Bunnett NW (2005) Protease-activated receptors: regulation of neuronal function. NeuroMolecular Med 7:79–99

    Article  CAS  PubMed  Google Scholar 

  • Sayed BA, Walker ME, Brown MA (2011) Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 186:3294–3298

    Article  CAS  PubMed  Google Scholar 

  • Secor VH, Secor WE, Gutekunst CA, Brown MA (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 191:813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeldrayers PA, Levin LA, Johnson D (1992) Astrocytes support mast cell viability in vitro. J Neuroimmunol 36:239–243

    Article  CAS  PubMed  Google Scholar 

  • Shaik-Dasthagirisaheb YB, Conti P (2016) The role of mast cells in Alzheimer's disease. Adv Clin Exp Med 25:781–787

    Article  PubMed  Google Scholar 

  • Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408

    CAS  PubMed  Google Scholar 

  • Sismanopoulos N, Delivanis DA, Alysandratos KD, Angelidou A, Therianou A, Kalogeromitros D, Theoharides TC (2012) Mast cells in allergic and inflammatory diseases. Curr Pharm Des 18:2261–2277

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L (2012) Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc Lond Ser B Biol Sci 367:3312–3325

    Article  CAS  Google Scholar 

  • Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26:3103–3117

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L, Giusti P (2013a) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141:314–327

    Article  Google Scholar 

  • Skaper SD, Facci L, Giusti P (2013b) Glia and mast cells as targets for Palmitoylethanolamide, an anti-inflammatory and Neuroprotective lipid mediator. Mol Neurobiol 48:340–352

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L, Giusti P (2014) Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets 13:1654–1666

    Article  PubMed  Google Scholar 

  • Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley CL, Shirihai OS, Theoharides TC (2009) Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J Immunol 183:6313–6319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanzola MB, Robbie-Ryan M, Gutekunst CA, Brown MA (2003) Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J Immunol 171:4385–4391

    Article  CAS  PubMed  Google Scholar 

  • Tetlow LC, Woolley DE (1995) Mast cells, cytokines, and metalloproteinases at the rheumatoid lesion: dual immunolocalisation studies. Ann Rheum Dis 54:896–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavel R, Stolmeier D, Yang X, Anantharam P, Zaheer A (2012) Expression of glia maturation factor in neuropathological lesions of Alzheimer's disease. Neuropathol Appl Neurobiol 38:572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavel R, Kempuraj D, Stolmeier D, Anantharam P, Khan M, Zaheer A (2013) Glia maturation factor expression in entorhinal cortex of Alzheimer's disease brain. Neurochem Res 38:1777–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33

    Article  CAS  PubMed  Google Scholar 

  • Tore F, Tuncel N (2009) Mast cells: target and source of neuropeptides. Curr Pharm Des 15:3433–3445

    Article  CAS  PubMed  Google Scholar 

  • Walker ME, Hatfield JK, Brown MA (2012) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta 1822:57–65

    Article  CAS  PubMed  Google Scholar 

  • Wang BR, Zaheer A, Lim R (1992) Polyclonal antibody localizes glia maturation factor beta-like immunoreactivity in neurons and glia. Brain Res 591:1–7

    Article  CAS  PubMed  Google Scholar 

  • Woo MS, Park JS, Choi IY, Kim WK, Kim HS (2008) Inhibition of MMP-3 or −9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 106:770–780

    Article  CAS  PubMed  Google Scholar 

  • Zaheer A, Fink BD, Lim R (1993) Expression of glia maturation factor beta mRNA and protein in rat organs and cells. J Neurochem 60:914–920

    Article  CAS  PubMed  Google Scholar 

  • Zaheer A, Yorek MA, Lim R (2001) Effects of glia maturation factor overexpression in primary astrocytes on MAP kinase activation, transcription factor activation, and neurotrophin secretion. Neurochem Res 26:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Zaheer A, Mathur SN, Lim R (2002) Overexpression of glia maturation factor in astrocytes leads to immune activation of microglia through secretion of granulocyte-macrophage-colony stimulating factor. Biochem Biophys Res Commun 294:238–244

    Article  CAS  PubMed  Google Scholar 

  • Zaheer A, Zaheer S, Sahu SK, Knight S, Khosravi H, Mathur SN, Lim R (2007) A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. J Neurochem 101:364–376

    Article  CAS  PubMed  Google Scholar 

  • Zaheer A, Knight S, Zaheer A, Ahrens M, Sahu SK, Yang B (2008a) Glia maturation factor overexpression in neuroblastoma cells activates glycogen synthase kinase-3beta and caspase-3. Brain Res 1190:206–214

    Article  CAS  PubMed  Google Scholar 

  • Zaheer A, Zaheer S, Thangavel R, Wu Y, Sahu SK, Yang B (2008b) Glia maturation factor modulates beta-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage. Brain Res 1208:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaheer S, Wu Y, Sahu SK, Zaheer A (2011a) Suppression of neuro inflammation in experimental autoimmune encephalomyelitis by glia maturation factor antibody. Brain Res 1373:230–239

    Article  CAS  PubMed  Google Scholar 

  • Zaheer S, Thangavel R, Sahu SK, Zaheer A (2011b) Augmented expression of glia maturation factor in Alzheimer's disease. Neuroscience 194:227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zeng X, Yang H, Hu G, He S (2012) Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem 29:931–940

    Article  PubMed  Google Scholar 

  • Zhang X, Wang Y, Dong H, Xu Y, Zhang S (2016) Induction of microglial activation by mediators released from mast cells. Cell Physiol Biochem 38:1520–1531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Flow cytometry data presented herein were obtained at the Flow Cytometry Facility, which is a Carver College of Medicine/Holden Comprehensive Cancer Center core research facility at the University of Iowa, Iowa City, IA. The Facility is funded through user fees and the generous financial support of the Carver College of Medicine, Holden Comprehensive Cancer Center, and Iowa City Veteran’s Administration Medical Center. We thank Mr. Justin Fishbaugh, Technical Director, Flow Cytometry Facility for his help in Flow Cytometry data acquisition and analysis in this study.

Funding

This work was supported by Veteran Affairs Merit Award I01BX002477 and National Institutes of Health Grants AG048205 & NS073670 to AZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Zaheer.

Ethics declarations

The Committee on the Ethics of Animal Experiments of the University of Iowa (Iowa City, IA) and the University of Missouri (Columbia, MO) approved the protocol.

Conflict of Interest

Authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kempuraj, D., Selvakumar, G.P., Zaheer, S. et al. Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson’s Disease. J Neuroimmune Pharmacol 13, 100–112 (2018). https://doi.org/10.1007/s11481-017-9766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-017-9766-1

Keywords

Navigation