Skip to main content

Advertisement

Log in

The role of mast cells in neuroinflammation

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin and well known for their pathogenetic role in allergic and anaphylactic reactions. In addition, they are also involved in processes of innate and adaptive immunity. MCs can be activated in response to a wide range of stimuli, resulting in the release of not only pro-inflammatory, but also anti-inflammatory mediators. The patterns of secreted mediators depend upon the given stimuli and microenvironmental conditions, accordingly MCs have the ability to promote or attenuate inflammatory processes. Their presence in the central nervous system (CNS) has been recognized for more than a century. Since then a participation of MCs in various pathological processes in the CNS has been well documented. They can aggravate CNS damage in models of brain ischemia and hemorrhage, namely through increased blood–brain barrier damage, brain edema and hemorrhage formation and promotion of inflammatory responses to such events. In contrast, recent evidence suggests that MCs may have a protective role following traumatic brain injury by degrading pro-inflammatory cytokines via specific proteases. In neuroinflammatory diseases such as multiple sclerosis, the role of MCs seems to be ambiguous. MCs have been shown to be damaging, neuroprotective, or even dispensable, depending on the experimental protocols used. The role of MCs in the formation and progression of CNS tumors such as gliomas is complex and both positive and negative relationships between MC activity and tumor progression have been reported. In summary, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. This review intends to give a concise overview of the regulatory roles of MCs in brain disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arinobu Y, Iwasaki H, Gurish MF, Mizuno S, Shigematsu H, Ozawa H, Tenen DG, Austen KF, Akashi K (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 102(50):18105–18110. doi:10.1073/pnas.0509148102

    Article  PubMed  CAS  Google Scholar 

  2. Bennett JL, Blanchet MR, Zhao L, Zbytnuik L, Antignano F, Gold M, Kubes P, McNagny KM (2009) Bone marrow-derived mast cells accumulate in the central nervous system during inflammation but are dispensable for experimental autoimmune encephalomyelitis pathogenesis. J Immunol 182(9):5507–5514. doi:10.4049/jimmunol.0801485

    Article  PubMed  CAS  Google Scholar 

  3. Biran V, Cochois V, Karroubi A, Arrang JM, Charriaut-Marlangue C, Heron A (2008) Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 18(1):1–9. doi:10.1111/j.1750-3639.2007.00092.x

    Article  PubMed  CAS  Google Scholar 

  4. Brown MA, Hatfield JK (2012) Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol 3:147. doi:10.3389/fimmu.2012.00147

    Article  PubMed  Google Scholar 

  5. Carlson T, Kroenke M, Rao P, Lane TE, Segal B (2008) The Th17-ELR + CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J Exp Med 205(4):811–823. doi:10.1084/jem.20072404

    Article  PubMed  CAS  Google Scholar 

  6. Christy AL, Brown MA (2007) The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol 179(5):2673–2679 (pii:179/5/2673)

    PubMed  CAS  Google Scholar 

  7. Costa JJ, Weller PF, Galli SJ (1997) The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 278(22):1815–1822

    Article  PubMed  CAS  Google Scholar 

  8. Couturier N, Zappulla JP, Lauwers-Cances V, Uro-Coste E, Delisle MB, Clanet M, Montagne L, Van der Valk P, Bo L, Liblau RS (2008) Mast cell transcripts are increased within and outside multiple sclerosis lesions. J Neuroimmunol 195(1–2):176–185. doi:10.1016/j.jneuroim.2008.01.017

    Article  PubMed  CAS  Google Scholar 

  9. Dropp JJ (1972) Mast cells in the central nervous system of several rodents. Anat Rec 174(2):227–237. doi:10.1002/ar.1091740207

    Article  PubMed  CAS  Google Scholar 

  10. Dropp JJ (1979) Mast cells in the human brain. Acta Anat (Basel) 105(4):505–513

    Article  CAS  Google Scholar 

  11. Du T, Friend DS, Austen KF, Katz HR (1996) Tissue-dependent differences in the asynchronous appearance of mast cells in normal mice and in congenic mast cell-deficient mice after infusion of normal bone marrow cells. Clin Exp Immunol 103(2):316–321

    Article  PubMed  CAS  Google Scholar 

  12. Dvorak AM (1997) New aspects of mast cell biology. Int Arch Allergy Immunol 114(1):1–9

    Article  PubMed  CAS  Google Scholar 

  13. Ehrlich P (1879) Über die spezifischen Granulationen des Blutes. Arch Anat Physiol Abteil 571–579

  14. Erdei A, Andrasfalvy M, Peterfy H, Toth G, Pecht I (2004) Regulation of mast cell activation by complement-derived peptides. Immunol Lett 92(1–2):39–42. doi:10.1016/j.imlet.2003.11.019

    Article  PubMed  CAS  Google Scholar 

  15. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, Radermacher P, Moller P, Benoist C, Mathis D, Fehling HJ, Rodewald HR (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and t cell-mediated autoimmunity. Immunity 35(5):832–844. doi:10.1016/j.immuni.2011.09.015

    Article  PubMed  CAS  Google Scholar 

  16. Galinsky DS, Nechushtan H (2008) Mast cells and cancer—no longer just basic science. Crit Rev Oncol Hematol 68(2):115–130. doi:10.1016/j.critrevonc.2008.06.001

    Article  PubMed  Google Scholar 

  17. Galli SJ (1993) New concepts about the mast cell. N Engl J Med 328(4):257–265. doi:10.1056/NEJM199301283280408

    Article  PubMed  CAS  Google Scholar 

  18. Galli SJ, Hammel I (1994) Mast cell and basophil development. Curr Opin Hematol 1(1):33–39

    PubMed  CAS  Google Scholar 

  19. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786. doi:10.1146/annurev.immunol.21.120601.141025

    Article  PubMed  CAS  Google Scholar 

  20. Galli SJ, Kitamura Y (1987) Genetically mast-cell-deficient W/Wv and Sl/Sld mice. Their value for the analysis of the roles of mast cells in biologic responses in vivo. Am J Pathol 127(1):191–198

    PubMed  CAS  Google Scholar 

  21. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6(2):135–142. doi:10.1038/ni1158

    Article  PubMed  CAS  Google Scholar 

  22. Galli SJ, Tsai M (2008) Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 49(1):7–19. doi:1016/j.jdermsci.2007.09.009

    Article  PubMed  CAS  Google Scholar 

  23. Gilfillan AM, Beaven MA (2011) Regulation of mast cell responses in health and disease. Crit Rev Immunol 31(6):475–529 (pii:20591c2466aedc19,222bcdb718a38c7c)

    Article  PubMed  CAS  Google Scholar 

  24. Gilfillan AM, Rivera J (2009) The tyrosine kinase network regulating mast cell activation. Immunol Rev 228(1):149–169. doi:10.1111/j.1600-065X.2008.00742.x

    Article  PubMed  CAS  Google Scholar 

  25. Gordon JR, Galli SJ (1994) Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cell-derived transforming growth factor beta and tumor necrosis factor alpha. J Exp Med 180(6):2027–2037

    Article  PubMed  CAS  Google Scholar 

  26. Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167(3):835–848

    Article  PubMed  CAS  Google Scholar 

  27. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8(10):1095–1104. doi:10.1038/ni1503

    Article  PubMed  CAS  Google Scholar 

  28. Hallgren J, Pejler G (2006) Biology of mast cell tryptase. An inflammatory mediator. FEBS J 273(9):1871–1895. doi:10.1111/j.1742-4658.2006.05211.x

    Article  PubMed  CAS  Google Scholar 

  29. Hedtjarn M, Mallard C, Hagberg H (2004) Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 24(12):1333–1351. doi:10.1097/01.WCB.0000141559.17620.36

    Article  PubMed  Google Scholar 

  30. Hendrix S, Kramer P, Pehl D, Warnke K, Boato F, Nelissen S, Lemmens E, Pejler G, Metz M, Siebenhaar F, Maurer M (2012) Mast cells protect from post-traumatic brain inflammation by the mast cell-specific chymase mouse mast cell protease-4. FASEB J. doi:10.1096/fj.12-204800

    PubMed  Google Scholar 

  31. Hendrix S, Nitsch R (2007) The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol 184(1–2):100–112. doi:10.1016/j.jneuroim.2006.11.019

    Article  PubMed  CAS  Google Scholar 

  32. Hendrix S, Warnke K, Siebenhaar F, Peters EM, Nitsch R, Maurer M (2006) The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett 392(3):174–177

    Article  PubMed  CAS  Google Scholar 

  33. Henz BM, Maurer M, Lippert U, Worm M, Babina M (2001) Mast cells as initiators of immunity and host defense. Exp Dermatol 10(1):1–10

    Article  PubMed  CAS  Google Scholar 

  34. Hough LB (1988) Cellular localization and possible functions for brain histamine: recent progress. Prog Neurobiol 30(6):469–505 (pii:0301-0082(88)90032-9)

    Article  PubMed  CAS  Google Scholar 

  35. Ibrahim MZ, Reder AT, Lawand R, Takash W, Sallouh-Khatib S (1996) The mast cells of the multiple sclerosis brain. J Neuroimmunol 70(2):131–138 (pii:0165-5728(96)00102-6)

    Article  PubMed  CAS  Google Scholar 

  36. Jin Y, Silverman AJ, Vannucci SJ (2007) Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 29(4–5):373–384. doi:10.1159/000105478

    Article  PubMed  CAS  Google Scholar 

  37. Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40(9):3107–3112. doi:10.1161/STROKEAHA.109.549691

    Article  PubMed  CAS  Google Scholar 

  38. Johnson D, Krenger W (1992) Interactions of mast cells with the nervous system—recent advances. Neurochem Res 17(9):939–951

    Article  PubMed  CAS  Google Scholar 

  39. Karasuyama H, Mukai K, Tsujimura Y, Obata K (2009) Newly discovered roles for basophils: a neglected minority gains new respect. Nat Rev 9(1):9–13. doi:10.1038/nri2458

    CAS  Google Scholar 

  40. Kendall JC, Li XH, Galli SJ, Gordon JR (1997) Promotion of mouse fibroblast proliferation by IgE-dependent activation of mouse mast cells: role for mast cell tumor necrosis factor-alpha and transforming growth factor-beta 1. J Allergy Clin Immunol 99(1 Pt 1):113–123 (pii:S0091674997000055)

    PubMed  CAS  Google Scholar 

  41. Korkmaz OT, Tuncel N, Tuncel M, Oncu EM, Sahinturk V, Celik M (2010) Vasoactive intestinal peptide (VIP) treatment of Parkinsonian rats increases thalamic gamma-aminobutyric acid (GABA) levels and alters the release of nerve growth factor (NGF) by mast cells. J Mol Neurosci 41(2):278–287. doi:10.1007/s12031-009-9307-3

    Article  PubMed  CAS  Google Scholar 

  42. Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114(1):174–182. doi:10.1016/j.jaci.2004.03.049

    Article  PubMed  CAS  Google Scholar 

  43. Lassman AB, DeAngelis LM (2003) Brain metastases. Neurol Clin 21(1):1–23, vii

    Google Scholar 

  44. Li H, Nourbakhsh B, Safavi F, Li K, Xu H, Cullimore M, Zhou F, Zhang G, Rostami A (2011) Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol 187(1):274–282. doi:10.4049/jimmunol.1003603

    Article  PubMed  CAS  Google Scholar 

  45. Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML (2010) Mast cells as early responders in the regulation of acute blood–brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30(4):689–702. doi:10.1038/jcbfm.2009.282

    Article  PubMed  Google Scholar 

  46. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508. doi:10.1038/nm0502-500

    Article  PubMed  CAS  Google Scholar 

  47. Lozada A, Maegele M, Stark H, Neugebauer EM, Panula P (2005) Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors. Neuropathol Appl Neurobiol 31(2):150–162. doi:10.1111/j.1365-2990.2004.00622.x

    Article  PubMed  CAS  Google Scholar 

  48. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7(8):728–741. doi:10.1016/S1474-4422(08)70164-9

    Article  PubMed  Google Scholar 

  49. Maltby S, Khazaie K, McNagny KM (2009) Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta 1796(1):19–26. doi:10.1016/j.bbcan.2009.02.001

    PubMed  CAS  Google Scholar 

  50. Manni L, Micera A, Pistillo L, Aloe L (1998) Neonatal handling in EAE-susceptible rats alters NGF levels and mast cell distribution in the brain. Int J Dev Neurosci 16(1):1–8 (pii:S0736-5748(98)00003-3)

    Article  PubMed  CAS  Google Scholar 

  51. Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev 4(10):787–799

    Article  CAS  Google Scholar 

  52. Maslinska D, Laure-Kamionowska M, Maslinski KT, Gujski M, Maslinski S (2007) Distribution of tryptase-containing mast cells and metallothionein reactive astrocytes in human brains with amyloid deposits. Inflamm Res 56(Suppl 1):S17–S18

    Article  PubMed  CAS  Google Scholar 

  53. Maurer M, Wedemeyer J, Metz M, Piliponsky AM, Weller K, Chatterjea D, Clouthier DE, Yanagisawa MM, Tsai M, Galli SJ (2004) Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432(7016):512–516. doi:10.1038/nature03085

    Article  PubMed  CAS  Google Scholar 

  54. McCurdy JD, Lin TJ, Marshall JS (2001) Toll-like receptor 4-mediated activation of murine mast cells. J Leukoc Biol 70(6):977–984

    PubMed  CAS  Google Scholar 

  55. McDermott JR, Bartram RE, Knight PA, Miller HR, Garrod DR, Grencis RK (2003) Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci USA 100(13):7761–7766. doi:10.1073/pnas.1231488100

    Article  PubMed  CAS  Google Scholar 

  56. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079

    PubMed  CAS  Google Scholar 

  57. Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ (2007) Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 217:304–328. doi:10.1111/j.1600-065X.2007.00520.x

    Article  PubMed  CAS  Google Scholar 

  58. Metz M, Piliponsky AM, Chen CC, Lammel V, Abrink M, Pejler G, Tsai M, Galli SJ (2006) Mast cells can enhance resistance to snake and honeybee venoms. Science 313(5786):526–530. doi:10.1126/science.1128877

    Article  PubMed  CAS  Google Scholar 

  59. Miller HR, Pemberton AD (2002) Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 105(4):375–390 (pii:1375)

    Article  PubMed  CAS  Google Scholar 

  60. Min B (2008) Basophils: what they ‘can do’ versus what they ‘actually do’. Nat Immunol 9(12):1333–1339. doi:10.1038/ni.f.217

    Article  PubMed  CAS  Google Scholar 

  61. Nautiyal KM, Liu C, Dong X, Silver R (2011) Blood-borne donor mast cell precursors migrate to mast cell-rich brain regions in the adult mouse. J Neuroimmunol 240–241:142–146. doi:10.1016/j.jneuroim.2011.09.003

    Article  PubMed  CAS  Google Scholar 

  62. Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R (2008) Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci USA 105(46):18053–18057. doi:10.1073/pnas.0809479105

    Article  PubMed  CAS  Google Scholar 

  63. Neumann J (1890) Ueber das Vorkommen der sogenannten „Mastzellen” bei pathologischen Veränderungen des Gehirns. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 122(2)

  64. Niederhoffer N, Levy R, Sick E, Andre P, Coupin G, Lombard Y, Gies JP (2009) Amyloid beta peptides trigger CD47-dependent mast cell secretory and phagocytic responses. Int J Immunopathol Pharmacol 22(2):473–483

    PubMed  CAS  Google Scholar 

  65. Schmidt OI, Infanger M, Hyde CE, Ertel W, Stahel PF (2004) The role of neuroinflammation in traumatic brain injury. Eur J Trauma 30:135–149

    Article  Google Scholar 

  66. Olsson Y (1974) Mast cells in plaques of multiple sclerosis. Acta Neurol Scand 50(5):611–618

    Article  PubMed  CAS  Google Scholar 

  67. Pang X, Letourneau R, Rozniecki JJ, Wang L, Theoharides TC (1996) Definitive characterization of rat hypothalamic mast cells. Neuroscience 73(3):889–902 (pii:0306-4522(95)00606-0)

    Article  PubMed  CAS  Google Scholar 

  68. Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82(4):993–997 (pii:S0306452297003539)

    Article  PubMed  CAS  Google Scholar 

  69. Piconese S, Costanza M, Musio S, Tripodo C, Poliani PL, Gri G, Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Pedotti R (2011) Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice. Lab Invest 91(4):627–641. doi:10.1038/labinvest.2011.3

    Article  PubMed  CAS  Google Scholar 

  70. Polajeva J, Sjosten AM, Lager N, Kastemar M, Waern I, Alafuzoff I, Smits A, Westermark B, Pejler G, Uhrbom L, Tchougounova E (2011) Mast cell accumulation in glioblastoma with a potential role for stem cell factor and chemokine CXCL12. PLoS ONE 6(9):e25222. doi:10.1371/journal.pone.0025222

    Article  PubMed  CAS  Google Scholar 

  71. Porzionato A, Macchi V, Parenti A, De Caro R (2004) The distribution of mast cells in the human area postrema. J Anat 204(2):141–147. doi:10.1111/j.1469-7580.2004.00256.x

    Article  PubMed  Google Scholar 

  72. Prodeus AP, Zhou X, Maurer M, Galli SJ, Carroll MC (1997) Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390(6656):172–175. doi:10.1038/36586

    Article  PubMed  CAS  Google Scholar 

  73. Rice JE 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9(2):131–141. doi:10.1002/ana.410090206

    Article  PubMed  Google Scholar 

  74. Rivera J, Fierro NA, Olivera A, Suzuki R (2008) New insights on mast cell activation via the high affinity receptor for IgE. Adv Immunol 98:85–120. doi:1016/S0065-2776(08)00403-3

    Article  PubMed  CAS  Google Scholar 

  75. Robbie-Ryan M, Tanzola MB, Secor VH, Brown MA (2003) Cutting edge: both activating and inhibitory Fc receptors expressed on mast cells regulate experimental allergic encephalomyelitis disease severity. J Immunol 170(4):1630–1634

    PubMed  CAS  Google Scholar 

  76. Rodewald HR, Dessing M, Dvorak AM, Galli SJ (1996) Identification of a committed precursor for the mast cell lineage. Science 271(5250):818–822

    Article  PubMed  CAS  Google Scholar 

  77. Rozniecki JJ, Hauser SL, Stein M, Lincoln R, Theoharides TC (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37(1):63–66. doi:10.1002/ana.410370112

    Article  PubMed  CAS  Google Scholar 

  78. Sayed BA, Christy AL, Walker ME, Brown MA (2010) Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184(12):6891–6900. doi:10.4049/jimmunol.1000126

    Article  PubMed  CAS  Google Scholar 

  79. Sayed BA, Walker ME, Brown MA (2011) Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 186(6):3294–3298. doi:10.4049/jimmunol.1003574

    Article  PubMed  CAS  Google Scholar 

  80. Secor VH, Secor WE, Gutekunst CA, Brown MA (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 191(5):813–822

    Article  PubMed  CAS  Google Scholar 

  81. Shanas U, Bhasin R, Sutherland AK, Silverman AJ, Silver R (1998) Brain mast cells lack the c-kit receptor: immunocytochemical evidence. J Neuroimmunol 90(2):207–211 (pii:S0165572898001374)

    Article  PubMed  CAS  Google Scholar 

  82. Sharma N, Kumar V, Everingham S, Mali RS, Kapur R, Zeng LF, Zhang ZY, Feng GS, Hartmann K, Roers A, Craig AW (2012) SH2 domain-containing phosphatase-2 is a critical regulator of connective tissue mast cell survival and homeostasis in mice. Mol Cell Biol. doi:10.1128/MCB.00308-12

    Google Scholar 

  83. Shimada R, Nakao K, Furutani R, Kibayashi K (2012) A rat model of changes in dural mast cells and brain histamine receptor H3 expression following traumatic brain injury. J Clin Neurosci 19(3):447–451. doi:10.1016/j.jocn.2011.06.033

    Article  PubMed  CAS  Google Scholar 

  84. Silver R, Silverman AJ, Vitkovic L, Lederhendler II (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19(1):25–31 (pii:0166223696818637)

    Article  PubMed  CAS  Google Scholar 

  85. Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20(1):401–408

    PubMed  CAS  Google Scholar 

  86. Skaper SD, Facci L, Romanello S, Leon A (1996) Mast cell activation causes delayed neurodegeneration in mixed hippocampal cultures via the nitric oxide pathway. J Neurochem 66(3):1157–1166

    Article  PubMed  CAS  Google Scholar 

  87. Stelekati E, Bahri R, D’Orlando O, Orinska Z, Mittrucker HW, Langenhaun R, Glatzel M, Bollinger A, Paus R, Bulfone-Paus S (2009) Mast cell-mediated antigen presentation regulates CD8 + T cell effector functions. Immunity 31(4):665–676. doi:1016/j.immuni.2009.08.022

    Article  PubMed  CAS  Google Scholar 

  88. Stokely ME, Orr EL (2008) Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J Neurotrauma 25(1):52–61. doi:10.1089/neu.2007.0397

    Article  PubMed  Google Scholar 

  89. Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125(2 Suppl 2):S73–S80. doi:10.1016/j.jaci.2009.11.017

    Article  PubMed  Google Scholar 

  90. Strbian D, Karjalainen-Lindsberg ML, Kovanen PT, Tatlisumak T, Lindsberg PJ (2007) Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation 116(4):411–418. doi:10.1161/CIRCULATIONAHA.106.655423

    Article  PubMed  CAS  Google Scholar 

  91. Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26(5):605–612. doi:10.1038/sj.jcbfm.9600228

    Article  PubMed  Google Scholar 

  92. Strbian D, Kovanen PT, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2009) An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med 41(6):438–450. doi:10.1080/07853890902887303

    Article  PubMed  CAS  Google Scholar 

  93. Strbian D, Tatlisumak T, Ramadan UA, Lindsberg PJ (2007) Mast cell blocking reduces brain edema and hematoma volume and improves outcome after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 27(4):795–802. doi:10.1038/sj.jcbfm.9600387

    PubMed  Google Scholar 

  94. Sullivan BM, Locksley RM (2009) Basophils: a nonredundant contributor to host immunity. Immunity 30(1):12–20. doi:10.1016/j.immuni.2008.12.006

    Article  PubMed  CAS  Google Scholar 

  95. Taiwo OB, Kovacs KJ, Sun Y, Larson AA (2005) Unilateral spinal nerve ligation leads to an asymmetrical distribution of mast cells in the thalamus of female but not male mice. Pain 114(1–2):131–140. doi:10.1016/j.pain.2004.12.002

    Article  PubMed  Google Scholar 

  96. Tanzola MB, Robbie-Ryan M, Gutekunst CA, Brown MA (2003) Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J Immunol 171(8):4385–4391

    PubMed  CAS  Google Scholar 

  97. Theoharides TC (1990) Mast cells: the immune gate to the brain. Life Sci 46(9):607–617

    Article  PubMed  CAS  Google Scholar 

  98. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822(1):21–33. doi:10.1016/j.bbadis.2010.12.014

    Article  PubMed  CAS  Google Scholar 

  99. Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25(5):235–241. doi:10.1016/j.it.2004.02.013

    Article  PubMed  CAS  Google Scholar 

  100. Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P (2004) Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci 25(11):563–568. doi:10.1016/j.tips.2004.09.007

    Article  PubMed  CAS  Google Scholar 

  101. Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 217:65–78. doi:10.1111/j.1600-065X.2007.00519.x

    Article  PubMed  CAS  Google Scholar 

  102. Theoharides TC, Rozniecki JJ, Sahagian G, Jocobson S, Kempuraj D, Conti P, Kalogeromitros D (2008) Impact of stress and mast cells on brain metastases. J Neuroimmunol 205(1–2):1–7. doi:10.1016/j.jneuroim.2008.09.014

    Article  PubMed  CAS  Google Scholar 

  103. Tuncel N, Sener E, Cerit C, Karasu U, Gurer F, Sahinturk V, Baycu C, Ak D, Filiz Z (2005) Brain mast cells and therapeutic potential of vasoactive intestinal peptide in a Parkinson’s disease model in rats: brain microdialysis, behavior, and microscopy. Peptides 26(5):827–836. doi:10.1016/j.peptides.2004.12.019

    Article  PubMed  CAS  Google Scholar 

  104. Walker ME, Hatfield JK, Brown MA (2011) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta. doi:10.1016/j.bbadis.2011.02.009

    PubMed  Google Scholar 

  105. Welle M (1997) Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol 61(3):233–245

    PubMed  CAS  Google Scholar 

  106. Zappulla JP, Arock M, Mars LT, Liblau RS (2002) Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 131(1–2):5–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication was supported in part by grants from Deutsche Forschungsgemeinschaft (SPP1394) to S.H. and M.M. and from Fonds Wetenschappelijk Onderzoek, Vlaanderen to S.H. (G.0834.11N, G.0389.12) and to EL (1.2.703.10N). The authors also acknowledge the support of the COST action BM1007 “Mast cells and basophils—Targets for innovative therapy” which facilitated their collaboration. The authors thank Evelin Hagen for excellent technical assistance to generate the pictures of human MCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hendrix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelissen, S., Lemmens, E., Geurts, N. et al. The role of mast cells in neuroinflammation. Acta Neuropathol 125, 637–650 (2013). https://doi.org/10.1007/s00401-013-1092-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1092-y

Keywords

Navigation