Skip to main content

Advertisement

Log in

Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Amin ML, Joo JY, Yi DK, An SS (2015) Surface modification and local orientations of surface molecules in nanotherapeutics. J Control Release 207:131–142

    Article  CAS  PubMed  Google Scholar 

  • Araújo F, Shrestha N, Shahbazi MA, Liu D, Herranz-Blanco B, Mäkilä EM, Salonen JJ, Hirvonen JT, Granja PL, Sarmento B, Santos HA (2015) Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs. ACS Nano 9:8291–8302

    Article  PubMed  Google Scholar 

  • Bataineh H, Pestovsky O, Bakac A (2012) pH-induced mechanistic changeover from hydroxyl radicals to iron(iv) in the Fenton reaction. Chem Sci 3:1594–1599

    Article  CAS  Google Scholar 

  • Bauer B, Hartz AMS, Fricker G, Miller DS (2005) Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med 230:118–127

    CAS  Google Scholar 

  • Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V, Borm P, Estrada G, Ntziachristos V, Razansky D (2010) Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldeira LR, Fernandes FR, Costa DF, Frezard F, Afonso LC, Ferreira LA (2015) Nanoemulsions loaded with amphotericin B: a new approach for the treatment of leishmaniasis. Eur J Pharm Sci 70:125–131

    Article  CAS  PubMed  Google Scholar 

  • Campbell ML, Guerra FD, Dhulekar J, Alexis F, Whitehead DC (2015) Target-specific capture of environmentally relevant gaseous aldehydes and carboxylic acids with functional nanoparticles. Chemistry 21:14834–14842

    Article  CAS  PubMed  Google Scholar 

  • Cui ZK, Fan J, Kim S, Bezouglaia O, Fartash A, Wu BM, Aghaloo T, Lee M (2015) Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells. J Control Release 217:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • das Neves J, Michiels J, Arien KK, Vanham G, Amiji M, Bahia MF, Sarmento B (2012) Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res 29:1468–1484

    Article  PubMed  Google Scholar 

  • Esfandyari-Manesh M, Mostafavi SH, Majidi RF, Koopaei MN, Ravari NS, Amini M, Darvishi B, Ostad SN, Atyabi F, Dinarvand R (2015) Improved anticancer delivery of paclitaxel by albumin surface modification of PLGA nanoparticles. J Pharm Sci 23:28

    Google Scholar 

  • Fisher M, Abramov M, Van Aerschot A, Xu D, Juliano RL, Herdewijn P (2007) Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res 35:1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, Sarmento B (2014) Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules 15:3753–3765

    Article  CAS  PubMed  Google Scholar 

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37:48–57

    Article  CAS  PubMed  Google Scholar 

  • Gilmore JL, Yi X, Quan L, Kabanov AV (2008) Novel nanomaterials for clinical neuroscience. J NeuroImmune Pharmacol 3:83–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes MJ, Martins S, Sarmento B (2015) siRNA as a tool to improve the treatment of brain diseases: mechanism, targets and delivery. Ageing Res Rev 21:43–54

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Chen B, Liu R, Liu P, Xia G, Wang Y, Li X, Chen W, Wang X, Jiang H (2015) Biocompatibility assessment of polyethylene glycol-poly L-lysine-poly lactic-Co-glycolic acid nanoparticles in vitro and in vivo. J Nanosci Nanotechnol 15:3710–3719

    Article  CAS  PubMed  Google Scholar 

  • Hong W, Chen D, Jia L, Gu J, Hu H, Zhao X, Qiao M (2014) Thermo- and pH-responsive copolymers based on PLGA-PEG-PLGA and poly(l-histidine): synthesis and in vitro characterization of copolymer micelles. Acta Biomater 10:1259–1271

    Article  CAS  PubMed  Google Scholar 

  • Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C (2007) Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 21:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Hung CF, Hwang TL, Chang CC, Fang JY (2005) Physicochemical characterization and gene transfection efficiency of lipid emulsions with various co-emulsifiers. Int J Pharm 289:197–208

    Article  CAS  PubMed  Google Scholar 

  • Jain PP, Leber R, Nagaraj C, Leitinger G, Lehofer B, Olschewski H, Olschewski A, Prassl R, Marsh LM (2014) Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries. Int J Nanomedicine 9:3249–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang T, Jiang M, Jiang D, Feng X, Yao J, Song Q, Chen H, Gao X, Chen J (2015) Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol Pharm 12:2947–2961

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Chen HH (2010) Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells. J Drug Target 18:447–456

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane SP, Arya N, Ojha N, Kohler E, Shastri VP (2015) Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake. Int J Nanomedicine 10:775–789

    PubMed  PubMed Central  Google Scholar 

  • Mahringer A, Ott M, Reimold I, Reichel V, Fricker G (2011) The ABC of the blood-brain barrier - regulation of drug efflux pumps. Curr Pharm Des 17:2762–2770

    Article  CAS  PubMed  Google Scholar 

  • Martin-Banderas L, Munoz-Rubio I, Prados J, Alvarez-Fuentes J, Calderon-Montano JM, Lopez-Lazaro M, Arias JL, Leiva MC, Holgado MA, Fernandez-Arevalo M (2015) In vitro and in vivo evaluation of Delta(9)-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. Int J Pharm 487:205–212

    Article  CAS  PubMed  Google Scholar 

  • Moos T, Morgan EH (2000) Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 20:77–95

    Article  CAS  PubMed  Google Scholar 

  • Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2:129–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neves AR, Queiroz JF, Weksler B, Romero IA, Couraud PO, Reis S (2015) Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology 26:495103

    Article  PubMed  Google Scholar 

  • Platzer G, Okon M, McIntosh L (2014) pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. J Biomol NMR 60:109–129

    Article  CAS  PubMed  Google Scholar 

  • ResearchAndMarkets (2007) Drug delivery technology - revolutionizing CNS therapies: pharmavision

  • Soares S, Fonte P, Costa A, Andrade J, Seabra V, Ferreira D, Reis S, Sarmento B (2013) Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int J Pharm 456:370–381

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu V, Manjunath K (2004) Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 95:627–638

    Article  CAS  PubMed  Google Scholar 

  • Wang CF, Sarparanta MP, Makila EM, Hyvonen ML, Laakkonen PM, Salonen JJ, Hirvonen JT, Airaksinen AJ, Santos HA (2015) Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48:108–118

    Article  PubMed  Google Scholar 

  • Weksler B, Romero IA, Couraud PO (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10

  • Zhang Q, Wang A, Meng Y, Ning T, Yang H, Ding L, Xiao X, Li X (2015) NMR method for accurate quantification of polysorbate 80 copolymer composition. Anal Chem 87:9810–9816

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann JL, Nicolaus T, Neuert G, Blank K (2010) Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat Protoc 5:975–985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by European Regional Development Fund (ERDF) through the Programa Operacional Factores de Competitividade – COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia/ Ministério da Ciência e Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and the project UID/BIM/04293/2013, and co-financed by North Portugal Regional Operational Programme (ON.2 – O Novo Norte) in the framework of project SAESCTN-PIIC&DT/2011, under the National Strategic Reference Framework (NSRF). Maria João Gomes and Carlos Fernandes gratefully acknowledge Fundação para a Ciência e a Tecnologia (FCT), Portugal, for financial support (grant SFRH/BD/90404/2012 and SFRH/BD/98519/2013, respectively). The authors would like to acknowledge all the help of Victória Leiro with the NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, M.J., Fernandes, C., Martins, S. et al. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration. J Neuroimmune Pharmacol 12, 107–119 (2017). https://doi.org/10.1007/s11481-016-9685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9685-6

Keywords

Navigation