Skip to main content
Log in

pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the 1H, 13C, and 15N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain 15N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alei M, Morgan LO, Wageman WE, Whaley TW (1980) pH-dependence of 15N NMR shifts and coupling-constants in aqueous imidazole and 1-methylimidazole—comments on estimation of tautomeric equilibrium-constants for aqueous histidine. J Am Chem Soc 102:2881–2887

    Google Scholar 

  • Alexov E et al (2011) Progress in the prediction of pKa values in proteins. Proteins 79:3260–3275

    Google Scholar 

  • An L, Wang Y, Zhang N, Yan S, Bax A, Yai L (2014) Protein apparent dielectric constant and its termperature dependence from remote chemical shift effects. J Am Chem Soc 136, 9 Sept 2014 [Epub ahead of print]

  • Anderson DE, Lu J, McIntosh LP, Dahlquist FW (1993) The folding, stability and dynamics of T4 lysozyme: a perspective using nuclear magnetic resonance. In: Clore GM, Gronenborn AM (eds) NMR of Proteins, MacMillan Press, London, pp 258–304

  • Anderson KM, Esadze A, Manoharan M, Bruschweiler R, Gorenstein DG, Iwahara J (2013) Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. J Am Chem Soc 135:3613–3619

    Google Scholar 

  • Andre I, Linse S, Mulder FAA (2007) Residue-specific pKa determination of lysine and arginine side chains by indirect 15N and 13C NMR spectroscopy: application to apo calmodulin. J Am Chem Soc 129:15805–15813

    Google Scholar 

  • Bachovchin WW (1985) Confirmation of the assignment of the low-field proton-resonance of serine proteases by using specifically 15N labeled enzyme. Proc Natl Acad Sci USA 82:7948–7951

    ADS  Google Scholar 

  • Bachovchin WW (1986) 15N NMR spectroscopy of hydrogen-honding interactions in the active-site of serine protease—evidence for a moving histidine mechanism. Biochemistry 25:7751–7759

    Google Scholar 

  • Bachovchin WW (2001) Contributions of NMR spectroscopy to the study of hydrogen bonds in serine protease active sites. Magn Reson Chem 39:S199–S213

    Google Scholar 

  • Bachovchin WW, Roberts JD (1978) 15N nuclear magnetic-resonance spectroscopy—state of histidine in catalytic triad of alpha-lytic protease—implications for charge-relay mechanism of peptide-bond cleavage by serine proteases. J Am Chem Soc 100:8041–8047

    Google Scholar 

  • Bachovchin WW, Kaiser R, Richards JH, Roberts JD (1981) Catalytic mechanism of serine proteases—re-examination of the pH-dependence of the histidyl 1J13C2H coupling-constant in the catalytic triad of alpha-lytic protease. Proc Natl Acad Sci 78:7323–7326

    ADS  Google Scholar 

  • Baillargeon MW, Laskowski M, Neves DE, Porubcan MA, Santini RE, Markley JL (1980) Soybean trypsin-inhibitor (kunitz) and its complex with trypsin—13C nuclear magnetic-resonance studies of the reactive site arginine. Biochemistry 19:5703–5710

    Google Scholar 

  • Barraud P, Scubert M, Allain FHT (2012) A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins. J Biomol NMR 53:93–101

    Google Scholar 

  • Batchelor JG, Feeney J, Roberts GCK (1975) 13C NMR protonation shifts of amines, carboxylic-acids and amino acids. J Magn Reson 20:19–38

    ADS  Google Scholar 

  • Baturin SJ, Okon M, McIntosh LP (2011) Structure, dynamics, and ionization equilibria of the tyrosine residues in Bacillus circulans xylanase. J Biomol NMR 51:379–394

    Google Scholar 

  • Betz M, Löhr F, Wienk H, Rüterjans H (2004) Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B-agaradhaerens xylanase. Biochemistry 43:5820–5831

    Google Scholar 

  • Bienkiewicz EA, Lumb KJ (1999) Random-coil chemical shifts of phosphorylated amino acids. J Biomol NMR 15:203–206

    Google Scholar 

  • Blakeley MP, Langan P, Niimura N, Podjarny A (2008) Neutron crystallography: opportunities, challenges, and limitations. Curr Opin Struct Biol 18:593–600

    Google Scholar 

  • Blomberg F, Rüterjans H (1983) Nitrogen-15 NMR in biological systems. Biol Magn Reson 21–73

  • Blomberg F, Maurer W, Rüterjans H (1976) 15N nuclear magnetic resonance investigations on amino-acids. Proc Natl Acad Sci USA 73:1409–1413

    ADS  Google Scholar 

  • Blomberg F, Maurer W, Rüterjans H (1977) Nuclear magnetic resonance investigation of 15N-labeled histidine in aqueous-solution. J Am Chem Soc 99:8149–8159

    Google Scholar 

  • Borisov EV, Zhang W, Bolvig S, Hansen PE (1998) nJ(13C, O1H) coupling constants of intramolecularly hydrogen-bonded compounds. Magn Reson Chem 36:S104–S110

    Google Scholar 

  • Boyd J, Domene C, Redfield C, Ferraro MB, Lazzeretti P (2003) Calculation of dipole-shielding polarizabilities (σ 1αβγ ): the influence of uniform electric field effects on the shielding of backbone nuclei in proteins. J Am Chem Soc 125:9556–9557

    Google Scholar 

  • Braun D, Wider G, Wüthrich K (1994) Sequence-corrected 15N random coil chemical shifts. J Am Chem Soc 116:8466–8469

    Google Scholar 

  • Brockerman JA, Okon M, McIntosh LP (2014) Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy. J Biomol NMR 58:17–25

    Google Scholar 

  • Brown LR, Demarco A, Richarz R, Wagner G, Wüthrich K (1978) Influence of a single salt bridge on static and dynamic features of globular solution conformation of basic pancreatic trypsin-inhibitor—1H and 13C NMR studies of native and transaminated inhibitor. Eur J Biochem 88:87–95

    Google Scholar 

  • Buckingham AD (1960) Chemical shifts in the nuclear magnetic resonance spectra of molecules containing polar groups. Can J Chem 38:300–307

    Google Scholar 

  • Bundi A, Wüthrich K (1979a) 1H-NMR parameters of the common amino-acid residues measured in aqueous-solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 18:285–297

    Google Scholar 

  • Bundi A, Wüthrich K (1979b) Use of amide 1H-NMR titration shifts for studies of polypeptide conformation. Biopolymers 18:299–311

    Google Scholar 

  • Bystrov VF (1976) Spin-spin coupling and the conformational states of peptide systems. Prog Nuc Mag Reson Spect 10:41–81

    Google Scholar 

  • Castaneda CA, Fitch CA, Majumda A, Khangulov V, Schlessman JL, Garcia-Moreno B (2009) Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease. Proteins Struct Funct Design 15:570–588

  • Chevelkov V, Xue Y, Rao DK, Forman-Kay JD, Skrynnikov NR (2010) 15N H/D-SOLEXSY experiment for accurate measurement of amide solvent exchange rates: application to denatured drkN SH3. J Biomol NMR 46:227–244

    Google Scholar 

  • Chivers PT, Prehoda KE, Volkman BF, Kim B-M, Markley JL, Raines RT (1997) Microscopic pKa values of Escherichia thioredoxin. Biochemistry 36:14985–14991

    Google Scholar 

  • Clark AT, Smith K, Muhandiram R, Edmondson SP, Shriver JW (2007) Carboxyl pKa values, ion pairs, hydrogen bonding, and the pH-dependence of folding the hyperthermophile proteins Sac7d and Sso7d. J Mol Biol 372:992–1008

    Google Scholar 

  • Cohen JS, Hughes L, Wooten JB (1983) Observations of amino acid side chains in proteins by NMR methods. In: Cohen JS (ed) Magnetic resonance in biology, vol 2. Wiley Interscience, New York, pp 130–147

    Google Scholar 

  • Connelly GP, McIntosh LP (1998) Characterization of a buried neutral histidine in Bacillus circulans xylanase: internal dynamics and interaction with a bound water molecule. Biochemistry 37:1810–1818

    Google Scholar 

  • Creighton TE (2010) The biophysical chemistry of nucleic acids and proteins. Helvetian Press, Oxford

    Google Scholar 

  • Daopin S, Anderson DE, Baase WA, Dahlquist FW, Matthews BW (1991) Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry 30:11521–11529

    Google Scholar 

  • Day RM et al (2003) Tautomerism, acid-base equilibria, and H-bonding of the six histidines in subtilisin BPN’ by NMR. Protein Sci 12:794–810

    Google Scholar 

  • De Simone A, Cavalli A, Hsu STD, Vranken W, Vendruscolo M (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333

    Google Scholar 

  • Demarco A (1977) pH-dependence of internal references. J Magn Reson 26:527–528

    ADS  Google Scholar 

  • Dziembowska T, Rozwadowski Z (2001) Application of the deuterium isotope effect on NMR chemical shift to study proton transfer equilibrium. Curr Org Chem 5:289–313

    Google Scholar 

  • Ebina S, Wüthrich K (1984) Amide proton titration shifts in bull seminal inhibitor IIa by two-dimensional correlated 1H nuclear magnetic-resonance (COSY)—manifestation of conformational equilibria involving carboxylate groups. J Mol Biol 179:283–288

    Google Scholar 

  • Englander SW, Kallenbach NR (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16:521–655

    Google Scholar 

  • Esadze A, Li DW, Wang TZ, Bruschweiler R, Iwahara J (2011) Dynamics of lysine side-chain amino groups in a protein studied by heteronuclear 1H-15N NMR spectroscopy. J Am Chem Soc 133:909–919

    Google Scholar 

  • Esadze A, Zandarashvili L, Iwahara J (2014) Effective strategy to assign 1H-15N heteronuclear correlation NMR signals from lysine side-chain NH3 + groups of proteins at low temperatures. J Biomol NMR 60:23–27

    Google Scholar 

  • Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. ChemPhysChem 10:1356–1368

    Google Scholar 

  • Fitch CA, Karp DA, Lee KK, Stites WE, Lattman EE, Garcia-Moreno EB (2002) Experimental pKa values of buried residues: analysis with continuum methods and role of water penetration. Biophys J 82:3289–3304

    Google Scholar 

  • Forman-Kay JD, Clore GM, Gronenborn AM (1992) Relationship between electrostatics and redox function in human thioredoxin—characterization of pH titration shifts using 2-dimensional homonuclear and heteronuclear NMR. Biochemistry 31:3442–3452

    Google Scholar 

  • Forsyth WR, Antosiewicz JM, Robertson AD (2002) Empirical relationships between protein structure and carboxyl pKa values in proteins. Proteins Struct Func Bioinform 48:388–4034

    Google Scholar 

  • Freedman MH, Lyerla JR, Chaiken IM, Cohen JS (1973) 13C nuclear magnetic-resonance studies on selected amino acids, and proteins. Eur J Biochem 32:215–226

    Google Scholar 

  • Frey PA (2001) Strong hydrogen bonding in molecules and enzymatic complexes. Magn Reson Chem 39:S190–S198

    MathSciNet  Google Scholar 

  • Gao GH, Prasad R, Lodwig SN, Unkefer CJ, Beard WA, Wilson SH, London RE (2006) Determination of lysine pK values using [5-13C]lysine: application to the lyase domain of DNA Pol β. J Am Chem Soc 128:8104–8105

    Google Scholar 

  • Goux WJ, Allerhand A (1979) Studies of chemically modified histidine residues of proteins by 13C nuclear magnetic resonance spectroscopy. Reaction of hen egg white lysozyme with iodoacetate. J Biol Chem 254:2210–2213

    Google Scholar 

  • Grimsley GR, Scholtz JM, Pace CN (2009) A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci 18:247–251

    Google Scholar 

  • Grissom CB, Chinami MA, Benway DA, Ulrich EL, Markley JL (1987) Staphylococcal nuclease active-site amino-acids—pH-dependence of tyrosine and arginine as determined by NMR and kinetic-studies. Biochemistry 28:2116–2124

    Google Scholar 

  • Gueron M, Plateau P, Decorps M (1991) Solvent signal suppression in NMR. Prog Nuc Mag Reson Spect 23:135–209

    Google Scholar 

  • Guo J, Tolstoy PM, Koeppe B, Golubev NS, Denisov GS, Smirnov SN, Limbach HH (2012) Hydrogen bond geometries and proton tautomerism of homoconjugated anions of carboxylic acids studied via H/D isotope effects on 13C NMR chemical shifts. J Phys Chem A 116:11180–11188

    Google Scholar 

  • Hanoian P, Sigala PA, Herschlag D, Hammes-Schiffer S (2010) Hydrogen bonding in the active site of ketosteroid isomerase: electronic inductive effects and hydrogen bond coupling. Biochemistry 49:10339–10348

    Google Scholar 

  • Hansen PE (1981) Carbon-hydrogen spin-spin coupling-constants. Prog Nucl Magn Reson Spect 14:175–296

    Google Scholar 

  • Hansen PE (2000) Isotope effects on chemical shifts of proteins and peptides. Magn Reson Chem 38:1–10

    Google Scholar 

  • Hansen PE (2007) Isotope effect on chemical shifts in hydrogen-bonded systems. J Labelled Compd Rad 50:967–981

    Google Scholar 

  • Hansen AL, Kay LE (2014) Measurement of histidine pKa values and tautomer populations in invisible protein states. Proc Natl Acad Sci U S A 111:E1705–E1712

    ADS  Google Scholar 

  • Hansen PE, Lycka A (1989) A reinvestigation of one-bond deuterium-isotope effects on nitrogen and on proton nuclear shielding for the ammonium ion. Acta Chem Scand 43:222–232

    Google Scholar 

  • Harms MJ, Schlessman JL, Sue GR, Garcia-Moreno B (2011) Arginine residues at internal positions in a protein are always charged. Proc Natl Acad Sci USA 108:18954–18959

    ADS  Google Scholar 

  • Harris TK, Turner GJ (2002) Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB life 53:85–98

    Google Scholar 

  • Haruyama H, Qian YQ, Wüthrich K (1989) Static and transient hydrogen-bonding interactions in recombinant desulfatohirudin studied by 1H nuclear magnetic resonance measurements of amide proton exchange rates and pH-dependent chemical shifts. Biochemistry 28:4312–4317

    Google Scholar 

  • Hass MA, Jensen MR, Led JJ (2008) Probing electric fields in proteins in solution by NMR spectroscopy. Proteins 72:333–343

    Google Scholar 

  • Henry GD, Sykes BD (1990) Hydrogen-exchange kinetics in a membrane-protein determined by 15N NMR spectroscopy—use of the INEPT experiment to follow individual amides in detergent-solubilized M13 coat protein. Biochemistry 29:6303–6313

    Google Scholar 

  • Henry GD, Sykes BD (1995) Determination of the rotational-dynamics and pH-dependence of the hydrogen-exchange rates of the arginine guanidino group using NMR spectroscopy. J Biomol NMR 6:59–66

    Google Scholar 

  • Hoffmann R, Reichert I, Wachs WO, Zeppezauer M, Kalbitzer HR (1994) 1H and 31P NMR spectroscopy of phosphorylated model peptides. Int J Pept Protein Res 44:193–198

    Google Scholar 

  • Howarth OW, Lilley DMJ (1978) Carbon-13 NMR of peptides and proteins. Prog Nuc Magn Reson Spect 12:1–40

    Google Scholar 

  • Hunkapiler MW, Smallcombe SH, Whitaker DR, Richards JH (1973) Carbon nuclear magnetic-resonance studies of histidine residue in alpha-lytic protease—implications for catalytic mechanism of serine proteases. Biochemistry 12:4732–4743

    Google Scholar 

  • Hutson MS, Alexiev U, Shilov SV, Wise KJ, Braiman MS (2000) Evidence for a perturbation of arginine-82 in the bacteriorhodopsin photocycle from time-resolved infrared spectra. Biochemistry 39:13189–13200

    Google Scholar 

  • Isom DG, Castaneda CA, Cannon BR, Garcia-Moreno BE (2011) Large shifts in pKa values of lysine residues buried inside a protein. Proc Natl Acad Sci USA 108:5260–5265

    ADS  Google Scholar 

  • Iwahara J, Clore GM (2006) Sensitivity improvement for correlations involving arginine side-chain Nε/Hε resonances in multi-dimensional NMR experiments using broadband 15N 180o pulses. J Biomol NMR 36:251–257

    Google Scholar 

  • Iwahara J, Jung YS, Clore GM (2007) Heteronuclear NMR spectroscopy for lysine NH3 groups in proteins: unique effect of water exchange on 15N transverse relaxation. J Am Chem Soc 129:2971–2980

    Google Scholar 

  • Jeng MF, Holmgren A, Dyson HJ (1995) Proton sharing between cysteine thiols in Escherichia coli thioredoxin—implications for the mechanism of protein disulfide reduction. Biochemistry 34:10101–10105

    Google Scholar 

  • Joshi MD, Hedberg A, McIntosh LP (1997) Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Protein Sci 6:2667–2670

    Google Scholar 

  • Joshi MD, Sidhu G, Pot I, Brayer GD, Withers SG, McIntosh LP (2000) Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J Mol Biol 299:255–279

    Google Scholar 

  • Kalbitzer HR, Rosch P (1981) The effect of phosphorylation of the histidyl residue in the tetrapeptide Gly-Gly-His-Ala—changes of chemical shift and pK values in 1H-NMR and 31P-NMR spectra. Org Magn Reson 17:88–91

    Google Scholar 

  • Kanamori K, Roberts JD (1983) A 15N NMR study of the barriers to isomerization about guanidinium and guanidino carbon nitrogen bonds in L-arginine. J Am Chem Soc 105:4698–4701

    Google Scholar 

  • Kanamori K, Cain AH, Roberts JD (1978) Studies of pH and anion complexation effects on L-arginine by natural abundance 15N nuclear magnetic resonance spectroscopy. J Am Chem Soc 100:4979–4981

    Google Scholar 

  • Kawano K, Kyogoku Y (1975) Nitrogen-15 nuclear magnetic-resonance of histidine—effect of pH. Chem Lett 12:1305–1308

  • Kay LE (1993) Pulsed-field gradient-enhanced 3-dimensional NMR experiment for correlating 13Cα/β, 13C’, and 1Hα chemical-shifts in uniformly 13C-labeled proteins dissolved in H2O. J Am Chem Soc 115:2055–2057

    Google Scholar 

  • Keim P, Vigna RA, Morrow JS, Marshall RC, Gurd FRN (1973) 13C nuclear magnetic-resonance of pentapeptides of glycine containing central residues of serine, threonine, aspartic and glutamic acids, asparagine, and glutamin. J Biol Chem 248:7811–7818

    Google Scholar 

  • Keim P, Vigna RA, Nigen AM, Morrow JS, Gurd FRN (1974) 13C nuclear magnetic-resonance of pentapeptides of glycine containing central residues of methionine, proline, arginine, and lysine. J Biol Chem 249:4149–4156

    Google Scholar 

  • Kesvatera T, Jonsson B, Thulin E, Linse S (1996) Measurement and modelling of sequence-specific pKa values of lysine residues in calbindin D9k. J Mol Biol 259:828–839

    Google Scholar 

  • Khare D, Alexander P, Antosiewicz J, Bryan P, Gilson M, Orban J (1997) pKa measurements from nuclear magnetic resonance for the B1 and B2 immunoglobulin G-binding domains of protein G: comparison with calculated values for nuclear magnetic resonance and X-ray structures. Biochemistry 36:3580–3589

    Google Scholar 

  • Kjaergaard M, Brander S, Poulsen FM (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J Biomol NMR 49:139–149

    Google Scholar 

  • Knowles JR (1976) The intrinsic pKa values of functional groups in enzymes: improper deductions from the pH-dependence of steady-state parameters. CRC Crit Rev Biochem 4:165–173

    Google Scholar 

  • Krezel A, Bal W (2004) A formula for correlating pKa values determined in D2O and H2O. J Inorg Biochem 98:161–166

    Google Scholar 

  • Kubickova A, Krizek T, Coufal P, Wernersson E, Heyda J, Jungwirth P (2011) Guanidinium cations pair with positively charged arginine side chains in water. J Phys Chem Lett 2:1387–1389

    Google Scholar 

  • Kukic P, Farrell D, Søndergaard CR, Bjarnadottir U, Bradley J, Pollastri G, Nielsen JE (2010) Improving the analysis of NMR spectra tracking pH-induced conformational changes: removing artefacts of the electric field on the NMR chemical shift. Proteins Struct Func Bioinform 78:971–984

    Google Scholar 

  • Kukic P et al (2013) Protein dielectric constants determined from NMR chemical shift perturbations. J Am Chem Soc 135:16968–16976

    Google Scholar 

  • Ladner HK, Led JJ, Grant DM (1975) Deuterium-isotope effects on 13C chemical shifts in amino acids and dipeptides. J Magn Reson 20:530–534

    ADS  Google Scholar 

  • Langkilde A et al (2008) Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase. Acta Crystallogr D 64:851–863

    Google Scholar 

  • Lau DKW, Okon M, McIntosh LP (2012) The PNT domain from Drosophila Pointed-P2 contains a dynamic N-terminal helix preceded by a disordered phosphoacceptor sequence. Protein Sci 21:1716–1725

    Google Scholar 

  • Lecomte C, Jelsch C, Guillot B, Fournier B, Lagoutte A (2008) Ultrahigh-resolution crystallography and related electron density and electrostatic properties in proteins. J Synchrotron Rad 15:202–203

    Google Scholar 

  • Led JJ, Petersen SB (1979) Deuterium-isotope effects on 13C chemical-shifts in selected amino-acids as function of pH. J Magn Reson 33:603–6170

    ADS  Google Scholar 

  • Legerton TL, Kanamori K, Weiss RL, Roberts JD (1981) 15N NMR studies of nitrogen metabolism in intact mycelia of Neurospora crassa. Proc Natl Acad Sci 78:1495–1498

    ADS  Google Scholar 

  • Li SH, Hong M (2011) Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR. J Am Chem Soc 133:1534–1544

    Google Scholar 

  • Licht S (1985) pH measurement in concentrated alkaline-solutions. Anal Chem 57:514–519

    Google Scholar 

  • Liepinsh E, Otting G (1996) Proton exchange rates from amino acid side chains—implications for image contrast. Magn Reson Med 35:30–42

    Google Scholar 

  • Liepinsh E, Otting G, Wüthrich K (1992) NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. J Biomol NMR 2:447–465

    Google Scholar 

  • Lim JC, Gruschus JM, Kim G, Berlett BS, Tjandra N, Levine RL (2012) A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A. J Biol Chem 287:25596–25601

    Google Scholar 

  • Lindman S, Linse S, Mulder FA, Andre I (2006) Electrostatic contributions to residue-specific protonation equilibria and proton binding capacitance for a small protein. Biochemistry 45:13993–14002

    Google Scholar 

  • Lindman S, Linse S, Mulder FA, Andre I (2007) pKa values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability. Biophys J 92:257–266

    Google Scholar 

  • Löhr F, Katsemi V, Betz M, Hartleib J, Rüterjans H (2002) Sequence-specific assignment of histidine and tryptophan ring 1H, 13C and 15N resonances in 13C/15N- and 2H/13C/15N-labelled proteins. J Biomol NMR 22:153–164

    Google Scholar 

  • Löhr F, Rogov VV, Shi MC, Bernhard F, Dötsch V (2005) Triple-resonance methods for complete resonance assignment of aromatic protons and directly bound heteronuclei in histidine and tryptophan residues. J Biomol NMR 32:309–328

    Google Scholar 

  • London RE (1980) Correlation of carboxyl carbon titration shifts and pK values. J Magn Reson 38:173–177

    ADS  Google Scholar 

  • London RE, Walker TE, Whaley TW, Matwiyoff NA (1977) 15N NMR studies of 13C, 15N labeled arginine. Org Magn Reson 9:598–600

    Google Scholar 

  • London RE, Walker TE, Kollman VH, Matwiyoff NA (1978) Studies of pH-dependence of 13C shifts and carbon-carbon coupling-constants of [U-13C]aspartic and glutamic acids. J Am Chem Soc 100:3723–3729

    Google Scholar 

  • Ludwiczek ML et al (2013) Strategies for modulating the pH-dependent activity of a family 11 glycoside hydrolase. Biochemistry 52:3138–3156

    Google Scholar 

  • Markley JL (1975) Observation of histidine residues in proteins by means of nuclear magnetic-resonance spectroscopy. Acc Chem Res 8:70–80

    Google Scholar 

  • Mavridou DAI, Stevens JM, Ferguson SJ, Redfield C (2007) Active-site properties of the oxidized and reduced C-terminal domain of DsbD obtained by NMR spectroscopy. J Mol Biol 370:643–658

    Google Scholar 

  • Mayer R, Lancelot G, Spach G (1979) Side chain-backbone hydrogen-bonds in peptides containing glutamic-acid residues. Biopolymers 18:1293–1296

    Google Scholar 

  • McIntosh LP, Wand AJ, Lowry DF, Redfield AG, Dahlquist FW (1990) Assignment of the backbone 1H and 15N NMR resonances of bacteriophage T4 lysozyme. Biochemistry 29:6341–6362

    Google Scholar 

  • McIntosh LP et al (1996) The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of Bacillus circulans xylanase. Biochemistry 35:9958–9966

    Google Scholar 

  • McIntosh LP, Kang HS, Okon M, Nelson ML, Graves BJ, Brutscher B (2009) Detection and assignment of phosphoserine and phosphothreonine residues by 13C-31P spin-echo difference NMR spectroscopy. J Biomol NMR 43:31–37

    Google Scholar 

  • McIntosh LP, Naito D, Baturin SJ, Okon M, Joshi MD, Nielsen JE (2011) Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. J Biomol NMR 51:5–19

    Google Scholar 

  • McMahon BH et al (2004) FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase. Biochim Biophys Acta 1655:321–331

    Google Scholar 

  • Miao Y, Cross TA, Fu R (2014) Differentiation of histidine tautomeric states using 15N selectively filtered 13C solid-state NMR spectroscopy. J Magn Reson 245C:105–109

    ADS  Google Scholar 

  • Mossner E, Iwai H, Glockshuber R (2000) Influence of the pKa value of the buried, active-site cysteine on the redox properties of thioredoxin-like oxidoreductases. FEBS Lett 477:21–26

    Google Scholar 

  • Munowitz M, Bachovchin WW, Herzfeld J, Dobson CM, Griffin RG (1982) Acid-base and tautomeric equilibria in the solid-state—15N NMR spectroscopy of histidine and imidazole. J Am Chem Soc 104:1192–1196

    Google Scholar 

  • Nielsen JE, Gunner MR, Garcia-Moreno BE (2011) The pKa Cooperative: a collaborative effort to advance structure-based calculations of pKa values and electrostatic effects in proteins. Proteins 79:3249–3259

    Google Scholar 

  • Niimura N, Bau R (2008) Neutron protein crystallography: beyond the folding structure of biological macromolecules. Acta Cryst Section A 64:12–22

    ADS  Google Scholar 

  • Norberg J, Foloppe N, Nilsson L (2005) Intrinsic relative stabilities of the neutral tautomers of arginine side-chain models. J Chem Theory Comput 1:986–993

    Google Scholar 

  • Nordstrand K, Aslund F, Meunier S, Holmgren A, Otting G, Berndt KD (1999) Direct NMR observation of the Cys-14 thiol proton of reduced Escherichia coli glutaredoxin-3 supports the presence of an active site thiol-thiolate hydrogen bond. FEBS Lett 449:196–200

    Google Scholar 

  • Norton RS, Bradbury JH (1974) 13C nuclear magnetic-resonance study of tyrosine titrations. J Chem Soc Chem Comm 21:870–871

  • Oda Y, Yamazaki T, Nagayama K, Kanaya S, Kuroda Y, Nakamura H (1994) Individual ionization-constants of all the carboxyl groups in ribonuclease HI from Escherichia coli determined by NMR. Biochemistry 33:5275–5284

    Google Scholar 

  • Oktaviani NA, Pool TJ, Kamikubo H, Slager J, Scheek RM, Kataoka M, Mulder FAA (2012) Comprehensive determination of protein tyrosine pKa values for photoactive yellow protein using indirect 13C NMR spectroscopy. Biophys J 102:579–586

    Google Scholar 

  • Oldfield E, Norton RS, Allerhand A (1975a) Studies of individual carbon sites of proteins in solution by natural abundance carbon 13 nuclear magnetic-resonance spectroscopy—relaxation behavior. J Biol Chem 250:6368–6380

    Google Scholar 

  • Oldfield E, Norton RS, Allerhand A (1975b) Studies of individual carbon sites of proteins in solution by natural abundance carbon 13 nuclear magnetic-resonance spectroscopy—strategies for assignments. J Biol Chem 250:6381–6402

    Google Scholar 

  • Parsons SM, Raftery MA (1972) Ionization behavior of the catalytic carboxyls of lysozyme. Effects of ionic strength. Biochemistry 11:1623–1629

    Google Scholar 

  • Pellecchia M, Wider G, Iwai H, Wüthrich K (1997) Arginine side chain assignments in uniformly 15N-labeled proteins using the novel 2D Hε(Nε)HγHH experiment. J Biomol NMR 10:193–197

    Google Scholar 

  • Pelton JG, Torchia DA, Meadow ND, Roseman S (1993) Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated III(Glc), a signal-transducing protein from Escherichia coli, using 2-dimensional heteronuclear NMR techniques. Protein Sci 2:543–558

    Google Scholar 

  • Petkova AT, Hu JG, Bizounok M, Simpson M, Griffin RG, Herzfeld J (1999) Arginine activity in the proton-motive photocycle of bacteriorhodopsin: solid-state NMR studies of the wild-type and D85N proteins. Biochemistry 38:1562–1572

    Google Scholar 

  • Plesniak LA, Connelly GP, Wakarchuk WW, McIntosh LP (1996) Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange. Protein Sci 5:2319–2328

    Google Scholar 

  • Poon DKY, Schubert M, Au J, Okon M, Withers SG, McIntosh LP (2006) Unambiguous determination of the ionization state of a glycoside hydrolase active site lysine by 1H-15N heteronuclear correlation spectroscopy. J Am Chem Soc 128:15388–15389

    Google Scholar 

  • Popov K, Ronkkomaki H, Lajunen LHJ (2006) Guidelines for NMR measurements for determination of high and low pKa values. Pure Appl Chem 78:663–675

    Google Scholar 

  • Pregosin PS, Randall EW, White AI (1971) Natural abundance 15N nuclear magnetic resonance spectroscopy—amino acid derivatives. J Chem Soc Chem Comm 24:1602–1603

  • Prestegard JH, Sahu SC, Nkari WK, Morris LC, Live D, Gruta C (2013) Chemical shift prediction for denatured proteins. J Biomol NMR 55:201–209

    Google Scholar 

  • Prompers JJ, Groenewegen A, Hilbers CW, Pepermans HAM (1998) Two-dimensional NMR experiments for the assignment of aromatic side chains in 13C-labeled proteins. J Magn Reson 130:68–75

    ADS  Google Scholar 

  • Pujato M, Navarro A, Versace R, Mancusso R, Ghose R, Tasayco ML (2006) The pH-dependence of amide chemical shift of Asp/Glu reflects its pKa in intrinsically disordered proteins with only local interactions. BBA-Proteins Proteom 1764:1227–1233

    Google Scholar 

  • Quirt AR, Lyerla JR, Peat IR, Cohen JS, Reynolds WF, Freedman MH (1974) 13C nuclear magnetic resonance titration shifts in amino-acids. J Am Chem Soc 96:570–571

    Google Scholar 

  • Rabenstein DL, Sayer TL (1976a) 13C chemical shift parameters for amines, carboxylic acids, and amino acids. J Magn Reson 24:27–39

    ADS  Google Scholar 

  • Rabenstein DL, Sayer TL (1976b) Determination of microscopic acid dissociation constants by nuclear magnetic-resonance spectrometry. Anal Chem 48:1141–1145

    Google Scholar 

  • Raczynska ED et al (2003) Consequences of proton transfer in guanidine. J Phys Org Chem 16:91–106

    Google Scholar 

  • Rajagopal P, Waygood EB, Klevit RE (1994) Structural consequences of histidine phosphorylation—NMR characterization of the phosphohistidine form of histidine-containing protein from Bacillus subtilis and Escherichia coli. Biochemistry 33:15271–15282

    Google Scholar 

  • Rao NS, Legault P, Muhandiram DR, Greenblatt J, Battiste JL, Williamson JR, Kay LE (1996) NMR pulse schemes for the sequential assignment of arginine side-chain Hε protons. J Magn Reson Ser B 113:272–276

    Google Scholar 

  • Reynolds WF, Tzeng CW (1977) Determination of preferred tautomeric form of histamine by 13C NMR spectroscopy. Can J Biochem Cell B 55:576–578

    Google Scholar 

  • Reynolds WF, Peat IR, Freedman MH, Lyerla JR Jr (1973) Determination of the tautomeric form of the imidazole ring of L-histidine in basic solution by 13C magnetic resonance spectroscopy. J Am Chem Soc 95:328–331

    Google Scholar 

  • Richards RE, Thomas NA (1974) Nitrogen-14 nuclear magnetic-resonance study of amino acids, peptides, and other biologically interesting molecules. J Chem Soc Perk T 2:368–374

    Google Scholar 

  • Richarz R, Wüthrich K (1978) 13C NMR chemical-shifts of common amino acid residues measured in aqueous-solutions of linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 17:2133–2141

    Google Scholar 

  • Roberts JD, Yu C, Flanagan C, Birdseye TR (1982) A 15N nuclear magnetic-resonance study of the acid-base and tautomeric equilibria of 4-substituted imidazoles and its relevance to the catalytic mechanism of α-lytic protease. J Am Chem Soc 104:3945–3949

    Google Scholar 

  • Robillard G, Shulman RG (1972) High-resolution nuclear magnetic-resonance study of histidine—aspartate hydrogen-bond in chymotrypsin and chymotrypsinogen. J Mol Biol 71:507–511

    Google Scholar 

  • Roos G, Foloppe N, Messens J (2013) Understanding the pKa of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Sign 18:94–127

    Google Scholar 

  • Saito K, Ishikita H (2012) H atom positions and nuclear magnetic resonance chemical shifts of short H bonds in photoactive yellow protein. Biochemistry 51:1171–1177

    Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Mag Reson Specty 34:93–158

    Google Scholar 

  • Schaller W, Robertson AD (1995) pH, ionic strength, and temperature dependences of ionization equilibria for the carboxyl groups in turkey ovomucoid third domain. Biochemistry 34:4714–4723

    Google Scholar 

  • Schlemmer H, Sontheimer GM, Kalbitzer HR (1988) 31P nuclear magnetic-resonance spectroscopy of the phosphorylated tetrapeptide Gly-Gly-Asp-Ala. Magn Reson Chem 26:260–263

    Google Scholar 

  • Schlippe YVG, Hedstrom L (2005) A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch Biochem Biophys 433:266–278

    Google Scholar 

  • Schubert M et al (2007) Probing electrostatic interactions along the reaction pathway of a glycoside hydrolase: histidine characterization by NMR spectroscopy. Biochemistry 46:7383–7395

    Google Scholar 

  • Schwarzinger S, Kroon GJA, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978

    Google Scholar 

  • Segawa T, Kateb F, Duma L, Bodenhausen G, Pelupessy P (2008) Exchange rate constants of invisible protons in proteins determined by NMR spectroscopy. ChemBioChem 9:537–542

    Google Scholar 

  • Shimba N, Takahashi H, Sakakura M, Fujii I, Shimada I (1998) Determination of protonation and deprotonation forms and tautomeric states of histidine residues in large proteins using nitrogen-carbon J couplings in imidazole ring. J Am Chem Soc 120:10988–10989

    Google Scholar 

  • Shrager RI, Sachs DH, Schechte A, Cohen JS, Heller SR (1972) Nuclear magnetic-resonance titration curves of histidine ring protons.2. Mathematical models for interacting groups in nuclear magnetic-resonance titration curves. Biochemistry 11:541–547

    Google Scholar 

  • Smet-Nocca C, Launay H, Wieruszeski JM, Lippens G, Landrieu I (2013) Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA. J Biomol NMR 55:323–337

    Google Scholar 

  • Smith BC, Denu JM (2009) Chemical mechanisms of histone lysine and arginine modifications. BBA-Gene Regul Mech 1789:45–57

    Google Scholar 

  • Smith GM, Yu LP, Domingues DJ (1987) Directly observed 15N NMR spectra of uniformly enriched proteins. Biochemistry 26:2202–2207

    Google Scholar 

  • Søndergaard CR, McIntosh LP, Pollastri G, Nielsen JE (2008) Determination of electrostatic interaction energies and protonation state populations in enzyme active sites. J Mol Biol 376:269–287

    Google Scholar 

  • Song JK, Laskowski M, Qasim MA, Markley JL (2003) NMR determination of pKa values for Asp, Glu, His, and Lys mutants at each variable contiguous enzyme-inhibitor contact position of the turkey ovomucoid third domain. Biochemistry 42:2847–2856

    Google Scholar 

  • Spitzner N, Löhr F, Pfeiffer S, Koumanov A, Karshikoff A, Rüterjans H (2001) Ionization properties of titratable groups in ribonuclease T1—I. pKa values in the native state determined by two-dimensional heteronuclear NMR spectroscopy. Eur Biophys J with s 30:186–197

    Google Scholar 

  • Sudmeier JL, Ash EL, Gunther UL, Luo XL, Bullock PA, Bachovchin WW (1996) HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins. J Magn Reson Ser B 113:236–247

    Google Scholar 

  • Sudmeier JL, Bradshaw EM, Haddad KE, Day RM, Thalhauser CJ, Bullock PA, Bachovchin WW (2003) Identification of histidine tautomers in proteins by 2D 1H/13Cδ2 one-bond correlated NMR. J Am Chem Soc 125:8430–8431

    Google Scholar 

  • Surprenant HL, Sarneski JE, Key RR, Byrd JT, Reilley CN (1980) 13C NMR studies of amino acids—chemical-shifts, protonation shifts, microscopic protonation behavior. J Magn Reson 40:231–243

    ADS  Google Scholar 

  • Suzuki T, Yamaguch.T, Imanari M (1974) 15N FT NMR spectra of amino acids in natural abundance—pH-dependence of 15N chemical-shifts for L-arginine. Tetrahedron Lett 20:1809–1812

  • Szakacs Z, Kraszni M, Noszal B (2004) Determination of microscopic acid-base parameters from NMR pH titrations. Anal Bioanal Chem 378:1428–1448

    Google Scholar 

  • Takayama Y, Castaneda CA, Chimenti M, Garcia-Moreno B, Iwahara J (2008a) Direct evidence for deprotonation of a lysine side chain buried in the hydrophobic core of a protein. J Am Chem Soc 130:6714–6715

    Google Scholar 

  • Takayama Y, Sahu D, Iwahara J (2008b) Observing in-phase single-quantum 15N multiplets for NH2/NH3 + groups with two-dimensional heteronuclear correlation spectroscopy. J Magn Reson 194:313–316

    ADS  Google Scholar 

  • Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M (2009) Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on Cζ chemical shifts. J Am Chem Soc 131:18556–18562

    Google Scholar 

  • Takeda M, Jee J, Terauchi T, Kainosho M (2010) Detection of the sulfhydryl groups in proteins with slow hydrogen exchange rates and determination of their proton/deuteron fractionation factors using the deuterium-induced effects on the 13Cβ NMR signals. J Am Chem Soc 132:6254–6260

    Google Scholar 

  • Takeda M, Miyanoiri Y, Terauchi T, Yang C-J, Kainosho M (2014) Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates. J Magn Reson 241:148–154

    ADS  Google Scholar 

  • Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003

    Google Scholar 

  • Tanokura M (1983) 1H-NMR study on the tautomerism of the imidazole ring of histidine-residues 1. Microscopic pK values and molar ratios of tautomers in histidine-containing peptides. Biochim Biophys Acta 742:576–585

    Google Scholar 

  • Thanabal V, Omecinsky DO, Reily MD, Cody WL (1994) The 13C chemical shifts of amino acids in aqueous-solution containing organic-solvents—application to the secondary structure characterization of peptides in aqueous trifluoroethanol solution. J Biomol NMR 4:47–59

    Google Scholar 

  • Theillet FX et al (2012) Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR 54:217–236

    Google Scholar 

  • Tolbert BS, Tajc SG, Webb H, Snyder J, Nielsen JE, Miller BL, Basavappa R (2005) The active site cysteine of ubiquitin-conjugating enzymes has a significantly elevated pKa: functional implications. Biochemistry 44:16385–16391

    Google Scholar 

  • Tolstoy PM, Schah-Mohammedi P, Smirnov SN, Golubev NS, Denisov GS, Limbach HH (2004) Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: geometries and isotope and solvent effects. J Am Chem Soc 126:5621–5634

    Google Scholar 

  • Tomlinson JH, Ullah S, Hansen PE, Williamson MP (2009) Characterization of salt bridges to lysines in the protein G B1 domain. J Am Chem Soc 131:4674–4684

    Google Scholar 

  • Tomlinson JH, Green VL, Baker PJ, Williamson MP (2010) Structural origins of pH-dependent chemical shifts in the B1 domain of protein G. Proteins Struct Funct Bioinform 78:3000–3016

    Google Scholar 

  • Tugarinov V (2014) Indirect use of deuterium in solution NMR studies of protein structure and hydrogen bonding. Prog Nucl Magn Reson Spect 77:49–68

    Google Scholar 

  • Ullah S, Ishimoto T, Williamson MP, Hansen PE (2011) Ab initio calculations of deuterium isotope effects on chemical shifts of salt-bridged lysines. J Phys Chem B 115:3208–3215

    Google Scholar 

  • Ullmann GM (2003) Relations between protonation constants and titration curves in polyprotic acids: a critical view. J Phys Chem B 107:1263–1271

    Google Scholar 

  • Ulrich EL et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Google Scholar 

  • van Dijk AA, Delange LCM, Bachovchin WW, Robillard GT (1990) Effect of phosphorylation on hydrogen-bonding interactions of the active-site histidine of the phosphocarrier protein hpr of the phosphoenolpyruvate-dependent phosphotransferase system determined by 15N NMR spectroscopy. Biochemistry 29:8164–8171

    Google Scholar 

  • Velyvis A, Kay LE (2013) Measurement of active site ionization equilibria in the 670 kDa proteasome core particle using methyl-TROSY NMR. J Am Chem Soc 135:9259–9262

    Google Scholar 

  • Vis H, Boelens R, Mariani M, Stroop R, Vorgias CE, Wilson KS, Kaptein R (1994) 1H, 13C, and 15N resonance assignments and secondary structure-analysis of the hu protein from bacillus-stearothermophilus using 2-dimensional and 3-dimensional double-resonance and triple-resonance heteronuclear magnetic-resonance spectroscopy. Biochemistry 33:14858–14870

    Google Scholar 

  • Volpon L et al (2007) NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochim Acta Part A 67:1374–1381

    ADS  Google Scholar 

  • Vondrasek J, Mason PE, Heyda J, Collins KD, Jungwirth P (2009) The molecular origin of like-charge arginine-arginine pairing in water. J Phys Chem B 113:9041–9045

    Google Scholar 

  • Wang YJ, Jardetzky O (2002) Investigation of the neighboring residue effects on protein chemical shifts. J Am Chem Soc 124:14075–14084

    Google Scholar 

  • Wang YX et al (1996) Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272. Biochemistry 35:9945–9950

    Google Scholar 

  • Wasylishen RE, Friedrich JO (1987) Deuterium-isotope effects on nuclear shielding constants and spin spin coupling-constants in the ammonium ion, ammonia, and water. Can J Chem 65:2238–2243

    Google Scholar 

  • Wasylishen RE, Tomlinson G (1975) pH-dependence of 13C chemical-shifts and 13C, H coupling-constants in imidazole and L-histidine. Biochem J 147:605–607

    Google Scholar 

  • Wasylishen RE, Tomlinson G (1977) Applications of long-range 13C, H nuclear spin-spin coupling-constants in study of imidazole tautomerism in L-histidine, histamine, and related compounds. Can J Biochem Cell B 55:579–582

    Google Scholar 

  • Webb H, Tynan-Connolly BM, Lee GM, Farrell D, O’Meara F, Søndergaard CR, Teilum K, Hewage C, McIntosh LP, Nielsen JE (2011) Remeasuring HEWL pKa values by NMR spectroscopy: methods, analysis, accuracy, and implications for theoretical pKa, calculations. Proteins Struct Func Bioinform 79:685–702

    Google Scholar 

  • Werner MH, Clore GM, Fisher CL, Fisher RJ, Trinh L, Shiloach J, Gronenborn AM (1997) Correction of the NMR structure of the ETS1/DNA complex. J Biomol NMR 10:317–328

    Google Scholar 

  • Wilson NA, Barbar E, Fuchs JA, Woodward C (1995) Aspartic-acid 26 in reduced escherichia-coli thioredoxin has a pK(a) >9. Biochemistry 34:8931–8939

    Google Scholar 

  • Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectr 58:62–87

    Google Scholar 

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical-shifts of the common amino-acids 1. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81

    Google Scholar 

  • Witanowski M, Webb GA, Stefania L, Januszew H, Grabowsk Z (1972) Nitrogen-14 nuclear magnetic resonance of azoles and their benzo derivatives. Tetrahedron 28:637–653

    Google Scholar 

  • Witanowski M, Stefaniak L, Szymanski S, Webb GA (1976) 14N NMR study of isomeric structures of urea and its analogs. Tetrahedron 32:2127–2129

    Google Scholar 

  • Wittekind M, Metzler WJ, Mueller L (1993) Selective correlations of amide groups to glycine alpha-protons in proteins. J Magn Reson Ser B 101:214–217

    Google Scholar 

  • Wu XJ, Westler WM, Markley JL (1984) The assignment of imidazolium NH-H1 peaks in the 1H-NMR spectrum of a protein by one-dimensional and two-dimensional NOE experiments. J Magn Reson 59:524–529

    ADS  Google Scholar 

  • Wüthrich K, Wagner G (1979) Nuclear magnetic-resonance of labile protons in the basic pancreatic trypsin-inhibitor. J Mol Biol 130:1–18

    Google Scholar 

  • Xiao YW, Braiman M (2005) Modeling amino acid side chains in proteins: 15N NMR spectra of guanidino groups in nonpolar environments. J Phys Chem B 109:16953–16958

    Google Scholar 

  • Xiao Y, Hutson MS, Belenky M, Herzfeld J, Braiman MS (2004) Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine. Biochemistry 43:12809–12818

    Google Scholar 

  • Yamazaki T, Yoshida M, Nagayama K (1993) Complete assignments of magnetic resonances of ribonuclease-H from Escherichia coli by double-resonance and triple-resonance 2D and 3D NMR spectroscopies. Biochemistry 32:5656–5669

    Google Scholar 

  • Yamazaki T et al (1994) NMR and X-ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a nonpeptide cyclic urea-based inhibitor. J Am Chem Soc 116:10791–10792

    Google Scholar 

  • Yamazaki T, Pascal SM, Singer AU, Forman-Kay JD, Kay LE (1995) NMR pulse schemes for the sequence-specific assignment of arginine guanidino 15N and 1H chemical-shifts in proteins. J Am Chem Soc 117:3556–3564

    Google Scholar 

  • Yavari I, Roberts JD (1978) Differential rates of proton-exchange for guanidinium nitrogens of L-arginine determined by natural-abundance 15N nuclear magnetic-resonance spectroscopy. Biochem Biophys Res Commun 83:635–640

    Google Scholar 

  • Yu LP, Fesik SW (1994) pH titration of the histidine-residues of cyclophilin and FK506 binding-protein in the absence and presence of immunosuppressant ligands. Bioc Biophys Acta Prot Struct Molr Enzym 1209:24–32

    Google Scholar 

  • Zandarashvili L, Li DW, Wang T, Bruschweiler R, Iwahara J (2011) Signature of mobile hydrogen bonding of lysine side chains from long-range 15N-13C scalar J-couplings and computation. J Am Chem Soc 133:9192–9195

    Google Scholar 

  • Zandarashvili L, Esadze A, Iwahara J (2013) NMR Studies on the dynamics of hydrogen bonds and ion pairs involving lysine side chains of proteins. Adv Protein Chem Str 93:37–80

    Google Scholar 

  • Zheng G, Price WS (2010) Solvent signal suppression in NMR. Prog Nuclear Magn Res Spect 56:267–288

    Google Scholar 

  • Zhu L, Kemple MD, Yuan P, Prendergast FG (1995) N-terminus and lysine side chain pKa values of melittin in aqueous solutions and micellar dispersions measured by 15N NMR. Biochemistry 34:13196–13202

    Google Scholar 

Download references

Acknowledgments

G. P. was supported by the Austrian Science Fund (FWF). This research was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to L.P.M. Instrument support was provided by the Canadian Institutes for Health Research (CIHR), the Canadian Foundation for Innovation (CFI), the British Columbia Knowledge Development Fund (BCKDF), the UBC Blusson Fund, and the Michael Smith Foundation for Health Research (MSFHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. McIntosh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2014_9862_MOESM1_ESM.pdf

Supplementary material Two supplemental tables summarizing the complete pH-dependent chemical shifts of the blocked tripeptides (Table S1) and 13C6/15N4-l-arginine (Table S2) can be found in the online version. (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platzer, G., Okon, M. & McIntosh, L.P. pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. J Biomol NMR 60, 109–129 (2014). https://doi.org/10.1007/s10858-014-9862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9862-y

Keywords

Navigation