Skip to main content

Advertisement

Log in

Polymeric Nanoparticles Affect the Intracellular Delivery, Antiretroviral Activity and Cytotoxicity of the Microbicide Drug Candidate Dapivirine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine.

Methods

Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity.

Results

Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL.

Conclusions

These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CC50 :

50% cytotoxic concentration

CTAB:

cetyl trimethylammonium bromide

DIC:

differential interference contrast

DLS:

dynamic light scattering

DMSO:

dimethyl sulfoxide

EC50 :

50% effective concentration

FACS:

fluorescence-activated cell sorting

FBS:

fetal bovine serum

LDH:

lactate dehydrogenase

MOI:

multiplicity of infection

Mo-DC:

monocyte-derived dendritic cells

Mo/Mac:

monocyte/macrophages

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay

NNRTI:

non-nucleoside reverse transcriptase inhibitor

PBL:

peripheral blood lymphocytes

PBMCs:

peripheral blood mononuclear cells

PBS:

phosphate buffered saline

PCL:

poly(ε-caprolactone)

PdI:

polydispersity index

PEO:

poly(ethylene oxide)

PHA:

phytohemagglutinin

PPO:

poly(propylene oxide)

SEM:

scanning electron microscopy

SLS:

sodium lauryl sulfate

SVF:

simulated vaginal fluid

WST-1:

water soluble tetrazolium-1 assay

REFERENCES

  1. Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest. 2008;118(4):1244–54.

    Article  PubMed  CAS  Google Scholar 

  2. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363(27):2587–99.

    Article  PubMed  CAS  Google Scholar 

  3. Morris GC, Lacey CJ. Microbicides and HIV prevention: lessons from the past, looking to the future. Curr Opin Infect Dis. 2010;23(1):57–63.

    Article  PubMed  Google Scholar 

  4. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74.

    Article  PubMed  CAS  Google Scholar 

  5. Ariën KK, Vanham G. First real success for anti-HIV gel: a new start for HIV microbicides? Future Microbiol. 2010;5:1621–3.

    Article  PubMed  Google Scholar 

  6. Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat Rev Immunol. 2008;8(6):447–57.

    Article  PubMed  CAS  Google Scholar 

  7. Shen R, Richter HE, Clements RH, Novak L, Huff K, Bimczok D, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. 2009;83(7):3258–67.

    Article  PubMed  CAS  Google Scholar 

  8. Ariën KK, Jespers V, Vanham G. HIV sexual transmission and microbicides. Rev Med Virol. 2011;21(2):110–33.

    Article  Google Scholar 

  9. Kashuba AD, Abdool Karim SS, Kraft E, White N, Sibeko S, Werner L, et al. Do systemic and genital tract tenofovir concentrations predict HIV seroconversion in the CAPRISA 004 tenofovir gel trial? XVIII International AIDS Conference, 2010, Vienna, Austria.

  10. Rohan LC, Sassi AB. Vaginal drug delivery systems for HIV prevention. AAPS J. 2009;11(1):78–87.

    Article  PubMed  CAS  Google Scholar 

  11. du Toit LC, Pillay V, Choonara YE. Nano-microbicides: challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS. Adv Drug Deliv Rev. 2010;62(4–5):532–46.

    Article  PubMed  Google Scholar 

  12. das Neves J, Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev. 2010;62(4–5):458–77.

    Article  PubMed  Google Scholar 

  13. Mallipeddi R, Rohan LC. Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert Opin Drug Deliv. 2010;7(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  14. Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res. 2009;26(3):502–11.

    Article  PubMed  CAS  Google Scholar 

  15. Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater. 2009;8(6):526–33.

    Article  PubMed  CAS  Google Scholar 

  16. Chawla JS, Amiji MM. Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm. 2002;249(1–2):127–38.

    Article  PubMed  CAS  Google Scholar 

  17. Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res. 2006;23(11):2638–45.

    Article  PubMed  CAS  Google Scholar 

  18. Ece Gamsiz D, Shah LK, Devalapally H, Amiji MM, Carrier RL. A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/Mac) cells. Biotechnol Bioeng. 2008;101(5):1072–82.

    Article  PubMed  CAS  Google Scholar 

  19. das Neves J, Sarmento B, Amiji MM, Bahia MF. Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles. J Pharm Biomed Anal. 2010;52(2):167–72.

    Article  PubMed  Google Scholar 

  20. Owen DH, Katz DF. A vaginal fluid simulant. Contraception. 1999;59(2):91–5.

    Article  PubMed  CAS  Google Scholar 

  21. Frenkel YV, Clark Jr AD, Das K, Wang YH, Lewi PJ, Janssen PA, et al. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J Med Chem. 2005;48(6):1974–83.

    Article  PubMed  CAS  Google Scholar 

  22. Cavrois M, Neidleman J, Kreisberg JF, Greene WC. In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions. PLoS Pathog. 2007;3(1):e4.

    Article  PubMed  Google Scholar 

  23. Vanham G, Penne L, Allemeersch H, Kestens L, Willems B, van der Groen G, et al. Modeling HIV transfer between dendritic cells and T cells: importance of HIV phenotype, dendritic cell-T cell contact and T-cell activation. AIDS. 2000;14(15):2299–311.

    Article  PubMed  CAS  Google Scholar 

  24. Van Herrewege Y, Penne L, Vereecken C, Fransen K, van der Groen G, Kestens L, et al. Activity of reverse transcriptase inhibitors in monocyte-derived dendritic cells: a possible in vitro model for postexposure prophylaxis of sexual HIV transmission. AIDS Res Hum Retroviruses. 2002;18(15):1091–102.

    Article  PubMed  Google Scholar 

  25. Van Herrewege Y, Vanham G, Michiels J, Fransen K, Kestens L, Andries K, et al. A series of diaryltriazines and diarylpyrimidines are highly potent nonnucleoside reverse transcriptase inhibitors with possible applications as microbicides. Antimicrob Agents Chemother. 2004;48(10):3684–9.

    Article  PubMed  Google Scholar 

  26. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179(4):1109–18.

    Article  PubMed  CAS  Google Scholar 

  27. Freshney RI. Culture of animal cells: a manual of basic technique and specialized applications. 6th ed. Hoboken: Wiley-Blackwell; 2010. p. 365–82.

    Book  Google Scholar 

  28. Van Herrewege Y, Michiels J, Van Roey J, Fransen K, Kestens L, Balzarini J, et al. In vitro evaluation of nonnucleoside reverse transcriptase inhibitors UC-781 and TMC120-R147681 as human immunodeficiency virus microbicides. Antimicrob Agents Chemother. 2004;48(1):337–9.

    Article  PubMed  Google Scholar 

  29. Gali Y, Delezay O, Brouwers J, Addad N, Augustijns P, Bourlet T, et al. In vitro evaluation of viability, integrity and inflammation in genital epithelia upon exposure to pharmaceutical excipients and candidate microbicides. Antimicrob Agents Chemother. 2010;54(12):5105–14.

    Article  PubMed  CAS  Google Scholar 

  30. Kanemura Y, Mori H, Kobayashi S, Islam O, Kodama E, Yamamoto A, et al. Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity. J Neurosci Res. 2002;69(6):869–79.

    Article  PubMed  CAS  Google Scholar 

  31. Montefiori DC. Evaluating neutralizing antibodies against HIV, SIV, and SHIV in luciferase reporter gene assays. Curr Protoc Immunol. 2005;Chapter 12:Unit 12.11.

  32. Montefiori DC. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol Biol. 2009;485:395–405.

    Article  PubMed  CAS  Google Scholar 

  33. Heyndrickx L, Vermoesen T, Vereecken K, Kurth J, Coppens S, Aerts L, et al. Antiviral compounds show enhanced activity in HIV-1 single cycle pseudovirus assays as compared to classical PBMC assays. J Virol Methods. 2008;148(1–2):166–73.

    Article  PubMed  CAS  Google Scholar 

  34. Gali Y, Ariën KK, Praet M, Van den Bergh R, Temmerman M, Delezay O, et al. Development of an in vitro dual-chamber model of the female genital tract as a screening tool for epithelial toxicity. J Virol Methods. 2010;165(2):186–97.

    Article  PubMed  CAS  Google Scholar 

  35. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.

    Article  PubMed  CAS  Google Scholar 

  36. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.

    Article  CAS  Google Scholar 

  37. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.

    Article  PubMed  CAS  Google Scholar 

  38. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.

    Article  PubMed  CAS  Google Scholar 

  39. Woolfson AD, Malcolm RK, Morrow RJ, Toner CF, McCullagh SD. Intravaginal ring delivery of the reverse transcriptase inhibitor TMC 120 as an HIV microbicide. Int J Pharm. 2006;325(1–2):82–9.

    Article  PubMed  CAS  Google Scholar 

  40. Gupta KM, Pearce SM, Poursaid AE, Aliyar HA, Tresco PA, Mitchnik MA, et al. Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1. J Pharm Sci. 2008;97(10):4228–39.

    Article  PubMed  CAS  Google Scholar 

  41. Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules. 2008;9(2):435–43.

    Article  PubMed  CAS  Google Scholar 

  42. Harush-Frenkel O, Altschuler Y, Benita S. Nanoparticle–cell interactions: drug delivery implications. Crit Rev Ther Drug Carrier Syst. 2008;25(6):485–544.

    PubMed  CAS  Google Scholar 

  43. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  PubMed  CAS  Google Scholar 

  44. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84(4):493–8.

    Article  PubMed  CAS  Google Scholar 

  45. Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D, L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res. 2003;20(2):212–20.

    Article  PubMed  CAS  Google Scholar 

  46. Lewi P, Arnold E, Andries K, Bohets H, Borghys H, Clark A, et al. Correlations between factors determining the pharmacokinetics and antiviral activity of HIV-1 non-nucleoside reverse transcriptase inhibitors of the diaryltriazine and diarylpyrimidine classes of compounds. Drugs R D. 2004;5(5):245–57.

    Article  PubMed  CAS  Google Scholar 

  47. Tajalli H, Ghanadzadeh Gilani A, Zakerhamidi MS, Moghadam M. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions. Spectrochim Acta A Mol Biomol Spectrosc. 2009;72(4):697–702.

    Article  PubMed  CAS  Google Scholar 

  48. Arbeloa FL, Ojeda PR, Arbeloa IL. Dimerization and trimerization of rhodamine 6G in aqueous solution. Effect on the fluorescence quantum yield. J Chem Soc [Perkin 1]. 1988;84(12):1903–12.

    Google Scholar 

  49. Terrazas-Aranda K, Van Herrewege Y, Lewi PJ, Van Roey J, Vanham G. In vitro pre- and post-exposure prophylaxis using HIV inhibitors as microbicides against cell-free or cell-associated HIV-1 infection. Antivir Chem Chemother. 2007;18(3):141–51.

    PubMed  CAS  Google Scholar 

  50. das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318(1–2):1–14.

    Article  PubMed  Google Scholar 

  51. das Neves J, Amiji M, Sarmento B. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):389–99.

    Article  PubMed  Google Scholar 

  52. das Neves J, Sarmento B, Bahia MF, Carrier RL, Amiji M. Development and characterization of dapivirine-loaded poly(ε-caprolactone) nanoparticles as novel vaginal microbicide drug delivery systems. Trends in Microbicide Formulation Workshop, 2010, Arlington, VA, USA.

  53. das Neves J, Bahia MF, Amiji MM, Sarmento B. Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opin Drug Deliv. 2011;8(8):1085–104.

    Article  PubMed  Google Scholar 

  54. Nel A, Smythe S, Young K, Malcolm K, McCoy C, Rosenberg Z, et al. Safety and pharmacokinetics of dapivirine delivery from matrix and reservoir intravaginal rings to HIV-negative women. J Acquir Immune Defic Syndr. 2009;51(4):416–23.

    Article  PubMed  CAS  Google Scholar 

  55. Nel AM, Coplan P, van de Wijgert JH, Kapiga SH, von Mollendorf C, Geubbels E, et al. Safety, tolerability, and systemic absorption of dapivirine vaginal microbicide gel in healthy, HIV-negative women. AIDS. 2009;23(12):1531–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

José das Neves gratefully acknowledges Fundação para a Ciência e a Tecnologia, Portugal for financial support (grant SFRH/BD/43393/2008). Kevin K. Ariën and Guido Vanham are supported by research grants from the Fund for Scientific Research Flanders (FWO), the Agence Nationale de Recherches sur le SIDA et les hépatites virales (ANRS), and EU-FP7 CHAARM. Dapivirine was originally developed by Tibotec Pharmaceuticals and was licensed to the International Partnership for Microbicides under a royalty-free agreement for the development of vaginal microbicides. We express our gratitude to Jing Xu for SEM imaging at the Nanomaterials Characterization Facility, Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José das Neves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

das Neves, J., Michiels, J., Ariën, K.K. et al. Polymeric Nanoparticles Affect the Intracellular Delivery, Antiretroviral Activity and Cytotoxicity of the Microbicide Drug Candidate Dapivirine. Pharm Res 29, 1468–1484 (2012). https://doi.org/10.1007/s11095-011-0622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0622-3

KEY WORDS

Navigation