Skip to main content

Advertisement

Log in

Role of Immunity in Recovery from a Peripheral Nerve Injury

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Motoneurons are large multipolar neurons with cell bodies located in the brainstem and spinal cord, and peripheral axons ending in neuromuscular junctions. Peripheral nerve damage, outside the blood-brain barrier (BBB), results in both retrograde changes centrally and anterograde changes along the length of the axon distal to the lesion site. Often, peripheral nerve damage is accompanied by motoneuron cell death, unless axon regrowth and target reconnection occur so that the target muscle can provide essential neurotrophic factors. It is essential that the motoneuron cell body survive during the process of reconnection so that the source for essential axon-rebuilding proteins is assure(of a fact)/ensured (results). A commonly used peripheral injury paradigm is that of facial nerve transection at its exit from the skull through the stylomastoid foramen so that nerve reconnection to the facial muscle tissue is permanently prevented. This model system allows for the study of the mechanisms responsible for maintaining facial motoneuron (FMN) cell body survival, without the complicating factor of axon regrowth. Injury to the nervous system results in an immune response that is either neuroprotective or neurodestructive. Findings suggest that FMN survival after facial nerve axotomy depends on the action of a CD4+ T cell that is initially activated peripherally and subsequently reactivated centrally. This review will summarize what is known about the neural-immune players involved in FMN survival and repair, so that the pharmacological manipulation of this interaction will one day become evident for the clinical management of neurological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    Article  PubMed  CAS  Google Scholar 

  • Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R (2003) Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 100:14157–14162

    Article  PubMed  CAS  Google Scholar 

  • Aldskogius H (1982) Glial cell responses in the adult rabbit dorsal motor vagal nucleus during axon reaction. Neuropathol Appl Neurobiol 8:341–349

    Article  PubMed  CAS  Google Scholar 

  • Aldskogius H, Kozlova EN (1998) Central neuron–glial and glial–glial interactions following axon injury. Prog Neurobiol 55:1–26

    Article  PubMed  CAS  Google Scholar 

  • Archambault AS, Sim J, Gimenez MA, Russell JH (2005) Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur J Immunol 35:1076–1085

    Article  PubMed  CAS  Google Scholar 

  • Besser M, Wank R (1999) Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 162:6303–6306

    PubMed  CAS  Google Scholar 

  • Bryam SC, Serpe CJ, Pruett SB, Sanders VM, Jones KJ (2003) Natural killer cells do not mediate facial motoneuron survival after facial nerve transection. Brain Behav Immun 17:417–425

    Article  PubMed  Google Scholar 

  • Byram SC, Carson MJ, DeBoy CA, Serpe CJ, Sanders VM, Jones KJ (2004) CD4-positive T cell-mediated neuroprotection requires dual compartment antigen presentation. J Neurosci 24:4333–4339

    Article  PubMed  CAS  Google Scholar 

  • Cammermeyer J (1955) Astroglial changes during retrograde atrophy of nucleus facialis in mice. J Comp Neurol 102:133–150

    Article  PubMed  CAS  Google Scholar 

  • Carrithers MD, Visintin I, Kang SJ, Janeway CA Jr (2000) Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123(Pt 6):1092–1101

    Article  PubMed  Google Scholar 

  • Fabry Z, Waldschmidt MM, Hendrickson D, Keiner J, Love-Homan L, Takei F, Hart MN (1992) Adhesion molecules on murine brain microvascular endothelial cells: expression and regulation of ICAM-1 and Lgp 55. J Neuroimmunol 36:1–11

    Article  PubMed  CAS  Google Scholar 

  • Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67–116

    Article  PubMed  CAS  Google Scholar 

  • Gordon LB, Knopf PM, Cserr HF (1992) Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J Neuroimmunol 40:81–87

    Article  PubMed  CAS  Google Scholar 

  • Graeber MB, Bise K, Mehraein P (1993) Synaptic stripping in the human facial nucleus. Acta Neuropathol (Berl) 86:179–181

    Article  CAS  Google Scholar 

  • Graeber MB, Kreutzberg GW (1986) Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons. J Neurocytol 15:363–373

    Article  PubMed  CAS  Google Scholar 

  • Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    PubMed  CAS  Google Scholar 

  • Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11:125–137

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  • Hughes P, Beilharz E, Gluckman P, Dragunow M (1993) Brain-derived neurotrophic factor is induced as an immediate early gene following N-methyl-d-aspartate receptor activation. Neuroscience 57:319–328

    Article  PubMed  CAS  Google Scholar 

  • Hunter JV, Batchelder KF, Lo EH, Wolf GL (1995) Imaging techniques for in vivo quantitation of extracranial lymphatic drainage of the brain. Neuropathol Appl Neurobiol 21:185–188

    Article  PubMed  CAS  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Leger C, Imhof BA (2003) Forging the endothelium during inflammation: pushing at a half-open door? Cell Tissue Res 314:93–105

    Article  PubMed  CAS  Google Scholar 

  • Jones KJ, Drengler SM, Oblinger MM (1997a) Gonadal steroid regulation of growth-associated protein GAP-43 mRNA expression in axotomized hamster facial motor neurons. Neurochem Res 22:1367–1374

    Article  PubMed  CAS  Google Scholar 

  • Jones KJ, Durica TE, Jacob SK (1997b) Gonadal steroid preservation of central synaptic input to hamster facial motoneurons following peripheral axotomy. J Neurocytol 26:257–266

    Article  PubMed  CAS  Google Scholar 

  • Kaal EC, Joosten EA, Bar PR (1997) Prevention of apoptotic motoneuron death in vitro by neurotrophins and muscle extract. Neurochem Int 31:193–201

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  CAS  PubMed  Google Scholar 

  • Knopf PM, Cserr HF, Nolan SC, Wu TY, Harling-Berg CJ (1995) Physiology and immunology of lymphatic drainage of interstitial and cerebrospinal fluid from the brain. Neuropathol Appl Neurobiol 21:175–180

    Article  PubMed  CAS  Google Scholar 

  • Knopf PM, Harling-Berg CJ, Cserr HF, Basu D, Sirulnick EJ, Nolan SC, Park JT, Keir G, Thompson EJ, Hickey WF (1998) Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells. J Immunol 161:692–701

    PubMed  CAS  Google Scholar 

  • LaVelle A, LaVelle F (1984) Neuronal Reaction to Injury During Development. Academic Press, New York

    Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    PubMed  CAS  Google Scholar 

  • Liem RS, Brouwer N, Copray JC (2001) Ultrastructural localisation of intramuscular expression of BDNF mRNA by silver–gold intensified non-radioactive in situ hybridisation. Histochem Cell Biol 116:545–551

    Article  PubMed  CAS  Google Scholar 

  • Ling C, Sandor M, Fabry Z (2003) In situ processing and distribution of intracerebrally injected OVA in the CNS. J Neuroimmunol 141:90–98

    Article  PubMed  CAS  Google Scholar 

  • Liu ZQ, Bohatschek M, Pfeffer K, Bluethmann H, Raivich G (2005) Major histocompatibility complex (MHC2+) perivascular macrophages in the axotomized facial motor nucleus are regulated by receptors for interferon-gamma (IFNgamma) and tumor necrosis factor (TNF). Neuroscience 131:283–292

    Article  PubMed  CAS  Google Scholar 

  • Lotan M, Schwartz M (1994) Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J 8:1026–1033

    PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Kohyama K, Aikawa Y, Shin T, Kawazoe Y, Suzuki Y, Tanuma N (1998) Role of natural killer cells and TCR gamma delta T cells in acute autoimmune encephalomyelitis. Eur J Immunol 28:1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain Res Brain Res Rev 44:154–178

    Article  PubMed  Google Scholar 

  • Mosmann TR, Coffman RL (1989) Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv Immunol 46:111–147

    Article  PubMed  CAS  Google Scholar 

  • Novikov L, Novikova L, Kellerth JO (1997) Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 79:765–774

    Article  PubMed  CAS  Google Scholar 

  • Olsson T, Diener P, Ljungdahl A, Hojeberg B, van der Meide PH, Kristensson K (1992) Facial nerve transection causes expansion of myelin autoreactive T cells in regional lymph nodes and T cell homing to the facial nucleus. Autoimmunity 13:117–126

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin K (2001) The Mouse Brain in Stereotaxic Coordinates. Academic Press, San Diego

    Google Scholar 

  • Perry VH, Brown MC (1992) Role of macrophages in peripheral nerve degeneration and repair. BioEssays 14:401–406

    Article  PubMed  CAS  Google Scholar 

  • Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G (2002) Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 168:1940–1949

    PubMed  CAS  Google Scholar 

  • Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood–brain barrier. Glia 36:145–155

    Article  PubMed  CAS  Google Scholar 

  • Pryce G, Male D, Campbell I, Greenwood J (1997) Factors controlling T-cell migration across rat cerebral endothelium in vitro. J Neuroimmunol 75:84–94

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW (1998) Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18:5804–5816

    PubMed  CAS  Google Scholar 

  • Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AJ, Bartlett SE, Hendry IA (2000) Molecular mechanisms regulating the retrograde axonal transport of neurotrophins. Brain Res Brain Res Rev 33:169–178

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Kawazoe Y, Shen JS, Takeda Y, Arakawa Y, Ogawa J, Oyanagi K, Ohashi T, Watanabe K, Inoue K, Eto Y, Watabe K (2003) Adenoviral gene transfer of GDNF, BDNF and TGF beta 2, but not CNTF, cardiotrophin-1 or IGF1, protects injured adult motoneurons after facial nerve avulsion. J Neurosci Res 72:54–64

    Article  PubMed  CAS  Google Scholar 

  • Serpe CJ, Kohm AP, Huppenbauer CB, Sanders VM, Jones KJ (1999) Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (scid) mice. J Neurosci 19:RC7

    PubMed  CAS  Google Scholar 

  • Serpe CJ, Sanders VM, Jones KJ (2000) Kinetics of facial motoneuron loss following facial nerve transection in severe combined immunodeficient mice. J Neurosci Res 62:273–278

    Article  PubMed  CAS  Google Scholar 

  • Serpe CJ, Tetzlaff JE, Coers S, Sanders VM, Jones KJ (2002) Functional recovery after facial nerve crush is delayed in severe combined immunodeficient mice. Brain Behav Immun 16:808–812

    Article  PubMed  Google Scholar 

  • Serpe CJ, Coers S, Sanders VM, Jones KJ (2003) CD4+ T, but not CD8+ or B, lymphocytes mediate facial motoneuron survival after facial nerve transection. Brain Behav Immun 17:393–402

    Article  PubMed  Google Scholar 

  • Serpe CJ, Byram SC, Sanders VM, Jones KJ (2005) Brain-derived neurotrophic factor supports facial motoneuron survival after facial nerve transection in immunodeficient mice. Brain Behav Immun 19:173–180

    Article  PubMed  CAS  Google Scholar 

  • Stoll G, Muller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9:313–325

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (1993) Microglial–neuronal interactions. J Chem Neuroanat 6:261–266

    Article  PubMed  CAS  Google Scholar 

  • Svensson M, Eriksson P, Persson J, Liu L, Aldskogius H (1994) Functional properties of microglia following peripheral nerve injury. Neuropathol Appl Neurobiol 20:185–187

    PubMed  CAS  Google Scholar 

  • Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194(Pt 1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 109:181–190

    Article  Google Scholar 

  • Wu W, Li L, Yick LW, Chai H, Xie Y, Yang Y, Prevette DM, Oppenheim RW (2003) GDNF and BDNF alter the expression of neuronal NOS, c-Jun, and p75 and prevent motoneuron death following spinal root avulsion in adult rats. J Neurotrauma 20:603–612

    Article  PubMed  Google Scholar 

  • Yan Q, Elliott J, Snider WD (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360:753–755

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Elliott JL, Matheson C, Sun J, Zhang L, Mu X, Rex KL, Snider WD (1993) Influences of neurotrophins on mammalian motoneurons in vivo. J Neurobiol 24:1555–1577

    Article  PubMed  CAS  Google Scholar 

  • Zeine R, Owens T (1992) Direct demonstration of the infiltration of murine central nervous system by Pgp-1/CD44(high) CD45RB(low) CD4+ T cells that induce experimental allergic encephalomyelitis. J Neuroimmunol 40:57–69

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Krebs CJ, Guth L (1997) Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Exp Neurol 143:141–152

    Article  PubMed  CAS  Google Scholar 

  • Ziemssen T, Kumpfel T, Schneider H, Klinkert WE, Neuhaus O, Hohlfeld R (2005) Secretion of brain-derived neurotrophic factor by glatiramer acetate-reactive T-helper cell lines: implications for multiple sclerosis therapy. J Neurol Sci 233:109–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all of the past and present members of their respective laboratories for the many scholarly discussions that helped us to formulate the ideas contained herein. Particular thanks goes to Drs. Craig Serpe, Susanna Byram, and Cindy DeBoy for their dedication to this project when they were graduate students. The work described herein was supported by the NIH grant NS40433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia M. Sanders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, V.M., Jones, K.J. Role of Immunity in Recovery from a Peripheral Nerve Injury. Jrnl NeuroImmune Pharm 1, 11–19 (2006). https://doi.org/10.1007/s11481-005-9004-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-005-9004-0

Keywords

Navigation