Skip to main content
Log in

Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons

  • Published:
Journal of Neurocytology

Summary

Concomitant with the proliferation of satellite microglial cells occurring in the process of motor neuron regeneration, an astrocytic hypertrophy is also seen. A remarkable increase of glial fibrillary acidic protein (GFAP) immunoreactivity is demonstrated in astrocytes of the facial nucleus within a few days following nerve transection. The increase of GFAP antigenicity is associated with an increased appearance of glial filaments and astrocytic processes. We suggest that resident protoplasmic astrocytes become involved in retrograde changes in facial motor neurons and transform into reactive astrocytes. They are of the fibrous type and highly positive for GFAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J. (1985) Are glial cells excitable after all?Trends in Neurosciences 8, 141–2.

    Google Scholar 

  • Aldskogius, H. (1982) Glial cell responses in the adult rabbit dorsal motor vagal nucleus during axon reaction.Journal of Neuropathalogy and Applied Neurobiology 8, 341–9.

    Google Scholar 

  • Bignami, A. &Dahl, D. (1976) The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates.Journal of Neuropathology and Applied Neurobiology 2, 99–110.

    Google Scholar 

  • Bignami, A. &Dahl, D. (1977) Specificity of the glial fibrillary acidic protein for astroglia.Journal of Histochemistry and Cytochemistry 25, 466–9.

    Google Scholar 

  • Bignami, A. &Dahl, D. (1985) Intermediate filament proteins as immunocytochemical markers for neurons and glia. InImmunological Studies of Brain Cells and Functions, S.I.M.P. Research Monograph No. 6 (edited byAdinolfi, M. &Bignami, A.), pp. 6–26. Oxford: Blackwell Scientific.

    Google Scholar 

  • Bignami, A., Dahl, D. &Rueger, D. C. (1980) Glial fibrillary acidic protein (GFA) in normal neural cells and in pathological conditions. InAdvances in Cellular Neurobiology, Vol. 1, (edited byFedoroff, S. &Hertz, L.), pp. 285–310. New York: Academic Press.

    Google Scholar 

  • Bignami, A., Eng, L. F., Dahl, D. &Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence.Brain Research 43, 429–35.

    Google Scholar 

  • Blinzinger, K. &Kreutzberg, G. (1968) Displacement of synaptic terminals from regenerating motorneurons by microglial cells.Zeitschrift für Zellforschung und mikroskopische Anatomie 85, 145–57.

    Google Scholar 

  • Bunge, R. P. &Waksman, B. H. (1985) Glial development and interactions.Trends in Neurosciences 8, 424–7.

    Google Scholar 

  • Cammermeyer, J. (1955) Astroglial changes during retrograde atrophy of nucleus facialis in mice.Journal of Comparative Neurology 102, 133–50.

    Google Scholar 

  • Cammermeyer, J. (1965) Juxtavascular karyokinesis and microglia cell proliferation during retrograde reaction in the mouse facial nucleus.Ergebnisse der Anatomie und Entwicklungsgeschichte 38, 1–22.

    Google Scholar 

  • Charcot, M. (1868) Histologie de la sclérose en plaques.Gazette des Hôpitaux civils et militaires (Paris) 41, 554.

    Google Scholar 

  • Dahl, D. &Bignami, A. (1985) Intermediate filaments in nervous tissue, InCell and Muscle Motility, Vol. 6 (edited byShay, J. W.), pp. 75–96. New York: Plenum Press.

    Google Scholar 

  • Debus, E., Weber, K. &Osborn, M. (1983) Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides.Differentiation 25, 193–203.

    Google Scholar 

  • De Mey, J., Moeremans, M., Geuens, G., Nuydens, R. &De Brabander, M. (1981) High resolution light and electron microscopic localization of tubulin with the IGS (immuno gold staining) method.Cell Biology International Reports 5, 889–99.

    Google Scholar 

  • Eng, L. F. (1980) The glial fibrillary acidic (GFA) protein. InProteins of the Nervous System, 2nd edn (edited byBradshaw, R. A. &Schneider, D. M.), pp. 85–117. New York: Raven Press.

    Google Scholar 

  • Eng, L. F. &DeArmond, S. J. (1981) Glial fibrillary acidic (GFA) protein immunocytochemistry in development and neuropathology. InEleventh International Congress of Anatomy, Part A. Glial and Neuronal Cell Biology (edited byFedoroff, S.), pp. 65–79. New York: Alan R. Liss.

    Google Scholar 

  • Eng, L. F. &DeArmond, S. J. (1982) Immunocytochemical studies of astrocytes in normal development and disease. InAdvances in Cellular Neurobiology, Vol. 3 (edited byFedoroff, S. &Hertz, L.), pp. 145–71. New York: Academic Press.

    Google Scholar 

  • Eng, L. F., Vanderhaeghen, J. J., Bignami, A. &Gerstl, B. (1971) An acidic protein isolated from fibrous astrocytes.Brain Research 28, 351–4.

    Google Scholar 

  • Friede, R. L. &Johnstone, M. A. (1967) Responses of thymidine labelling of nuclei in gray matter and nerve following sciatic transection.Acta neuropathologica (Berlin) 7, 218–31.

    Google Scholar 

  • Geiger, B., Kreis, T. E., Gigi, O., Schmid, E., Mittnacht, S., Jorcano, J. L., Bassewitz, D. B. Von &Franke, W. W. (1984) Dynamic rearrangements of cytokeratins in living cells. InCancer Cells. Proceedings of the 1. Cancer Cell Conference, Cold Spring Harbor, 1983.The transformed phenotype, Vol. 1 (edited byLevine, A. J., Vande Woude, G. F., Topp, W. C. &Watson, J. D.), pp. 201–15. Cold Spring Harbor: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Gräber, M. B. &Kreutzberg, G. W. (1985) Immuno gold staining (IGS) for electron microscopical demonstration of glial fibrillary acidic (GFA) protein in LR White embedded tissue.Histochemistry 83, 497–500.

    Google Scholar 

  • Holländer, H. (1981) Target preparation for histochemical studies with the electron microscope.Science Tools 28, 8–10.

    Google Scholar 

  • Hsu, S.-M., Raine, L. &Fanger, H. (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.Journal of Histochemistry and Cytochemistry 29, 577–80.

    Google Scholar 

  • Karlsson, U. &Schultz, R. L. (1965) Fixation of the central nervous system for electron microscopy by aldehyde perfusion.Journal of Ultrastructure Research 12, 160–86.

    Google Scholar 

  • Kerns, J. M. &Kinsman, E. J. (1973) Neuroglial response to sciatic neurectomy. II. Electron microscopy.Journal of Comparative Neurology 151, 255–80.

    Google Scholar 

  • Kirkpatrick, J. B. (1968) Chromatolysis in the hypoglossal nucleus of the rat: an electron microscopic analysis.Journal of Comparative Neurology 132, 189–212.

    Google Scholar 

  • Kreutzberg, G. W. (1966) Autoradiographische Unter suchung über die Beteiligung von Gliazellen an der axonalen Reaktion im Facialiskern der Ratte.Acta neuropathologica (Berlin) 7, 149–61.

    Google Scholar 

  • Morrison, R. S., De Vellis, J., Lee, Y. L., Bradshaw, R. A. &Eng, L. F. (1985) Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes.Journal of Neuroscience Research 14, 167–76.

    Google Scholar 

  • Nissl, F. (1894) Über eine neue Untersuchungsmethode des Centralorgans speziell zur Feststellung der Lokalisation der Nervenzellen.Zentralblatt für Nervenheilkunde und Psychiatrie 17, 337–44.

    Google Scholar 

  • Reisert, I., Wildemann, G., Grab, D. &Pilgrim, Ch. (1984) The glial reaction in the course of axon regeneration: a stereological study of the rat hypoglossal nucleus.Journal of Comparative Neurology 229, 121–8.

    Google Scholar 

  • Sjöstrand, J. (1965) Proliferative changes in glial cells during nerve regeneration.Zeitschrift für Zellforschung und mikroskopische Anatomie 68, 481–93.

    Google Scholar 

  • Sjöstrand, J. (1971) Neuroglial proliferation in the hypoglossal nucleus after nerve injury.Experimental Neurology 30, 178–89.

    Google Scholar 

  • Sternberger, L. A., Hardy, P. H., Jr., Cuculis, J. J. &Meyer, H. G. (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes.Journal of Histochemistry and Cytochemistry 18, 315–33.

    Google Scholar 

  • Torvik, A. &Skjørten, F. (1971) Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. II. Changes in the glial cells.Acta neuropathologica (Berlin) 17, 265–82.

    Google Scholar 

  • Watson, W. E. (1965) An autoradiographic study of the incorporation of nucleic-acid precursors by neurones and glia during nerve regeneration.Journal of Physiology 180, 741–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabber, M.B., Kreutzberg, G.W. Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons. J Neurocytol 15, 363–373 (1986). https://doi.org/10.1007/BF01611438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611438

Keywords

Navigation