Skip to main content
Log in

Detection of Water-alcohol Content Using Surface Plasmon Resonance

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A high-sensitivity surface plasmon resonance sensor (SPR) for alcohol detection is provided and examined in this work. The sensor’s structure is built up of layers that include silicon dioxide, BP, silver, BK7 prism, and sensing medium. A mixture of alcohol and water that has different alcohol concentrations makes up the sensing medium. To achieve excellent performance, geometrical parameters are modified, such as layer thickness. The proposed sensor performs exceptionally well in this regard, with a sensitivity of 400 deg/RIU, a signal-to-noise ratio of 0.02, a limit of detection of 6.5e−4, a quality factor equal 16.59, and a figure of merit of 76.70 RIU−1. The suggested sensor can be a helpful tool for determining the amount of alcohol present in a particular medium according to these sensing features. The transfer matrix technique (TMM) is used to assess the sensor’s construction and performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reason-able request.

References

  1. Zhou W, Gao X, Liu DB, Chen XY (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators, B Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  3. Chemerkouh MJ, Saadatmand SB, Hamidi SM (2022) Ultra-high-sensitive biosensor based on SrTiO 3 and two-dimensional materials: Ellipsometric concepts. Opt Mater Express 12:2609–2622

    Article  CAS  Google Scholar 

  4. Singh TI, Singh P, Karki B (2023) Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics 18:1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Poltronieri P, Mezzolla V, Primiceri E, Maruccio G (2014) Biosensors for the detection of food pathogens. Foods 3(3):511–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sayed FA, Elsayed HA, Al-Dossari M, Eissa MF, Mehaney A, Aly AH (2023) Angular surface plasmon resonance-based sensor with a silver nanocomposite layer for effective water pollution detection. Sci Rep 13:21793. https://doi.org/10.1038/s41598-023-48837-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaky ZA, Idris SA, Panda A, Kovac J, Pukhrambam PD, Mohaseb MA, Hendy AS, Aly AH (2023) Theoretical optimization of Tamm plasmon polariton structure for pressure sensing applications. Opt Quant Electron 55:738. https://doi.org/10.1007/s11082-023-05023-0

    Article  CAS  Google Scholar 

  8. Zaky ZA, Al-Dossari M, Zohny EI, Aly AH (2023) Refractive index sensor using Fibonacci sequence of gyroidal graphene and porous silicon based on Tamm plasmon polariton. Opt Quant Electron 55:6. https://doi.org/10.1007/s11082-022-04262-x

    Article  CAS  Google Scholar 

  9. Zaky ZA, Hanafy H, Panda A et al (2022) Design and analysis of gas sensor using tailorable fano resonance by coupling between Tamm and defected mode resonance. Plasmonics 17:2103–2111. https://doi.org/10.1007/s11468-022-01699-4

    Article  CAS  Google Scholar 

  10. Elsayed AM, Ahmed AM, Arafa AH (2022) Glucose sensor modeling based on Fano resonance excitation in titania nanotube photonic crystal coated by titanium nitride as a plasmonic material. Appl Opt 61(7):1668–1674. https://doi.org/10.1364/AO.443621. PMID: 35297843

    Article  CAS  PubMed  Google Scholar 

  11. Zaky ZA, Sharma A, Aly AH (2022) Tamm plasmon polariton as refractive index sensor excited by gyroid metals/porous Ta2O5 photonic crystal. Plasmonics 17:681–691. https://doi.org/10.1007/s11468-021-01559-7

    Article  CAS  Google Scholar 

  12. Mishra SK, Tripathi DC, Mishra AK (2022) Metallic grating-assisted fiber optic SPR sensor with extreme sensitivity in IR region. Plasmonics 17:575–579

    Article  CAS  Google Scholar 

  13. Mishra SK, Verma RK, Mishra AK (2021) Versatile sensing structure: GaP/Au/Graphene/Silicon. Photonics 8:547

    CAS  Google Scholar 

  14. Mishra AK, Mishra SK (2017) MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain. J Phy Condensed matter 8:145001

    Article  Google Scholar 

  15. Mishra AK, Mishra SK, Singh AP (2018) Giant Infrared sensitivity of surface plasmon resonance-based refractive index sensor. Plasmonics 13:1183–1190. https://doi.org/10.1007/s11468-017-0619-9

    Article  CAS  Google Scholar 

  16. Karki B, Salah NH, Srivastava G et al (2023) A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. Plasmonics 18:2031–2040. https://doi.org/10.1007/s11468-023-01907-9

    Article  CAS  Google Scholar 

  17. Karki B, Pal A, Sarkar P et al (2023) Detection of chikungunya virus using tantalum diselenide (TaSe2)-based surface plasmon resonance biosensor. Plasmonics. https://doi.org/10.1007/s11468-023-02169-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karki B, Sarkar P, Dhiman G et al (2023) Platinum diselenide and graphene-based refractive index sensor for cancer detection. Plasmonics. https://doi.org/10.1007/s11468-023-02051-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jing JY, Wang Q, Zhao WM, Wang BT (2019) Long-range surface plasmon resonance and its sensing applications: a review. Opt Laser Eng 112:103–118

    Article  Google Scholar 

  20. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saadatmand SB, Chemerkouh MJHN, Ahmadi V, Hamidi SM (2023) Design and analysis of highly sensitive plasmonic sensor based on 2-D inorganic Ti-MXene and SrTiO3 interlayer. IEEE Sens J 23(12):12727–12735. https://doi.org/10.1109/JSEN.2023.3270133

    Article  CAS  Google Scholar 

  22. Saadatmand SB, Chemerkouh MJ, Ahmadi V, Hamidi SM (2023) Graphene-based integrated plasmonic sensor with application in biomolecule detection. J Opt Soc Am B 40:1–10

    Article  CAS  Google Scholar 

  23. Gaur DS, Purohit A, Mishra SK, Mishra AK (2022) An interplay between lossy mode resonance and surface plasmon resonance and their sensing applications. Biosensors 12:721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalathenos P, Russell NJ (2003) Ethanol as a food preservative. In: Russell NJ, Gould GW (eds) Food Preservatives. Springer, Boston, MA, pp 196–217

    Chapter  Google Scholar 

  25. Ashrafi TMS, Mohanty G (2022) Sensitivity calculation for different prism material based surface plasmon resonance sensor: a comparative study. J Phys Conf Ser 2267(1):012089

    Article  Google Scholar 

  26. Vibisha GA, Daher MG, Rahman SH, Jaroszewicz Z, Rajesh KB, Jha R (2023) Designing high sensitivity and high figure of merit SPR biosensor using copper and 2D material on CaF2 prism. Results Opt 11:100407, ISSN 2666-9501. https://doi.org/10.1016/j.rio.2023.100407

  27. Lin Z, Chen S, Lin C (2020) Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: a theoretical study. Sensors (Basel) 20(9):2445

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Wang C, Yang R, Liu W, Sun S (2017) A sensitive and stable surface plasmon resonance sensor based on monolayer protected silver film. Sensors (Basel) 17(12):2777

    Article  PubMed  Google Scholar 

  29. Nangare S, Patil P (2023) Black phosphorus nanostructure based highly sensitive and selective surface plasmon resonance sensor for biological and chemical sensing: a review. Crit Rev Anal Chem 53(1):1–26. https://doi.org/10.1080/10408347.2021.1927669

    Article  CAS  PubMed  Google Scholar 

  30. Wieloszyńska A, Pyrchla K, Jakóbczyk P, Lentka D, Sawczak M, Skowroński Ł, Bogdanowicz R (2023) Tailoring optical constants of few-layer black phosphorus coatings: Spectroscopic ellipsometry approach supported by ab-initio simulation. J Ind Eng Chem 127:579–589, ISSN 1226-086X. https://doi.org/10.1016/j.jiec.2023.07.043

  31. Yuk JS, Hong DG, Jung JW et al (2006) Sensitivity enhancement of spectral surface plasmon resonance biosensors for the analysis of protein arrays. Eur Biophys J 35:469–476

    Article  CAS  PubMed  Google Scholar 

  32. Ryken J, Li J, Steylaerts T, Vos R, Loo J, Jans K, Lagae L (2014) Biosensing with SiO2-covered SPR substrates in a commercial SPR-tool. Sens Actuators, B Chem 200:167–172

    Article  CAS  Google Scholar 

  33. Polyanskiy MN (2024) Refractiveindex.info database of optical constants. Sci Data 11(1):94. https://doi.org/10.1038/s41597-023-02898-2. PMID: 38238330; PMCID: PMC10796781

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yakubovsky I, Arsenin AV, Stebunov YV, Fedyanin DYu, Volkov VS (2017) Optical constants and structural properties of thin gold films. Opt Express 25:25574–25587. https://doi.org/10.1038/s41597-023-02898-2D

    Article  CAS  PubMed  Google Scholar 

  35. Choi SH, Byun KM (2010) Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection. JOSA A 27:2229–2236

    Article  CAS  PubMed  Google Scholar 

  36. Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19:458–466

    Article  CAS  PubMed  Google Scholar 

  37. Aspnes DE, Kelso SM, Logan RA, Bhat R (1986) Optical properties of AlxGa1−xAs. J Appl Phys 60:754–767

    Article  CAS  Google Scholar 

  38. Rahman MS, Anower MS, Hasan MR, Hossain MB, Haque MI (2017) Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt Commun 396:36–43

    Article  CAS  Google Scholar 

  39. Arasu PT, Al-Qazwini Y, Onn BI, Noor ASM (2012) Fiber Bragg grating based surface plasmon resonance sensor utilizing FDTD for alcohol detection applications. 2012 IEEE 3rd International Conference on Photonics, Pulau Pinang, Malaysia, pp. 93-97. https://doi.org/10.1109/ICP.2012.6379852

  40. Meradi KA, Tayeboun F, Guerinik A et al (2022) Optical biosensor based on enhanced surface plasmon resonance: theoretical optimization. Opt Quant Electron 54:124

    Article  CAS  Google Scholar 

  41. AS Kushwaha, A Kumar, R Kumar, S.K. Srivastava (2018) A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics Nanostructures - Fundam Appl 31:99–106, ISSN 1569-4410. https://doi.org/10.1016/j.photonics.2018.06.003

  42. Ouyang Q, Zeng S, Dinh X-Q, Coquet P, Yong K-T (2016) Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Proc Eng 140:134–139

    Article  CAS  Google Scholar 

  43. Daher MG, Ahmed NM, Patel SK et al (2023) Novel surface plasmon resonance detector for the detection of various alcohols with ultra-high sensitivity. Opt Quant Electron 55:1102. https://doi.org/10.1007/s11082-023-05418-z

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not yet received any funding of any type.

Author information

Authors and Affiliations

Authors

Contributions

M.E.O.,K.A.M.,F.T. conceived of the presented idea and developed the theory. M.E.O.,K.A.M.,F.T. and A.H.A performed the computations M.E.O.,K.A.M.,F.T. wrote and revise the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Arafa H. Aly.

Ethics declarations

Ethics Approval

This article does not contain any studies involving animals or human participants performed by any of the authors.

Consent to Participate

All authors accepted.

Consent for Publication

All authors accepted.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouardi, M.E., Meradi, K.A., Tayeboun, F. et al. Detection of Water-alcohol Content Using Surface Plasmon Resonance. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02285-6

Keywords

Navigation