Skip to main content
Log in

Design Optimization and Fabrication of Graphene/J-Aggregate Kretschmann-Raether Devices for Refractive Index Sensing Using Plasmon-Induced Transparency Phenomena

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Here, a novel plasmon-induced transparency (PIT) sensing platform based on a Kretschmann–Raether configuration with graphene/J-aggregate materials is proposed. The J-aggregate material, despite its dielectric optical properties, can strongly confine the surface wave-like metal layers. These features promise to highly enlarge the range of plasmonic sensing devices. Therefore, the sensing parameters have been numerically and experimentally investigated using the finite-difference time-domain (FDTD) method and atomic force microscopy (AFM). The results show that the PIT resonance of the structure has a sharp reflection, in turn, leads to high sensitivity. To deep benchmark the structure, the effects of the structural parameters and environmental variables such as temperature and magnetic field on the sensing properties of the device are analyzed in detail. The maximum sensitivity is obtained as high as 1400 angle per refractive-index unit (RIU) with an extra high figure of merit of 36 RIU−1 around the PIT resonance angle of 53°. By considering the magnetic field of 0.01 T and graphene chemical potential of μ  = 0.4 eV and environmental room temperature, the proposed structure may potentially be applied in advanced off-chip PIT sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data included in this paper are available upon request by contact with the contact corresponding author.

Code Availability

All code included in this paper are available upon request by contact with the contact corresponding author.

References

  1. Sharafeldin M, Jones A, Rusling JF (2018) 3D-printed biosensor arrays for medical diagnostics. Micromachines 9:394

    Article  PubMed Central  Google Scholar 

  2. Kaushal H, Kaddoum G (2017) Applications of lasers for tactical military operations. IEEE Access 5:20736–20753

    Article  Google Scholar 

  3. Jogschies L, Klaas D, Kruppe R, Rittinger J, Taptimthong P, Wienecke A, Rissing L, Wurz MC (2015) Recent developments of magnetoresistive sensors for industrial applications. Sensors 15:28665–28689

    Article  PubMed  PubMed Central  Google Scholar 

  4. Verma N, Bhardwaj A (2015) Biosensor technology for pesticides—a review. Appl Biochem Biotechnol 175:3093–3119

    Article  CAS  PubMed  Google Scholar 

  5. Ferreira MF, Castro-Camus E, Ottaway DJ, López-Higuera JM, Feng X, Jin W, Jeong Y, Picqué N, Tong L, Reinhard BM (2017) Roadmap on optical sensors. J Opt 19:083001

  6. Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming DR, Chen Q (2016) Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev 10:962–969

    Article  CAS  Google Scholar 

  7. Popa D, Udrea F (2019) Towards integrated mid-infrared gas sensors. Sensors 19:2076

    Article  CAS  PubMed Central  Google Scholar 

  8. Farmani A, Mir A (2019) Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol Lett 31:643–646

    Article  CAS  Google Scholar 

  9. Qian Y, Zeng X, Gao Y, Li H, Kumar S, Gan Q, Cheng X, Bartoli FJ (2019) Intensity-modulated nanoplasmonic interferometric sensor for MMP-9 detection. Lab Chip 19:1267–1276

    Article  CAS  PubMed  Google Scholar 

  10. Wang X-Y, Wang Y-L, Wang S, Li B, Zhang X-W, Dai L, Ma R-M (2017) Lasing enhanced surface plasmon resonance sensing. Nanophotonics 6:472–478

    Article  CAS  Google Scholar 

  11. Nazemi H, Joseph A, Park J, Emadi A (2019) Advanced micro-and nano-gas sensor technology: a review. Sensors 19:1285

    Article  CAS  PubMed Central  Google Scholar 

  12. Li B, Li H, Zeng L, Zhan S, He Z, Chen Z, Xu H (2015) High-sensitivity sensing based on plasmon-induced transparency. IEEE Photonics J 7:1–7

    Google Scholar 

  13. Wen L, Liang L, Yang X, Liu Z, Li B, Chen Q (2019) Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrical readout in Au-Si nanojunctions. ACS Nano 13:6963–6972

    Article  CAS  PubMed  Google Scholar 

  14. Shishir R, Chen F, Xia J, Tao N, Ferry D (2009) Room temperature carrier transport in graphene. J Comput Electron 8:43–50

    Article  CAS  Google Scholar 

  15. Khansili N, Rattu G, Krishna PM (2018) Label-free optical biosensors for food and biological sensor applications. Sens Actuators, B Chem 265:35–49

    Article  CAS  Google Scholar 

  16. Zhang R, Rejeeth C, Xu W, Zhu C, Liu X, Wan J, Jiang M, Qian K (2019) Label-free electrochemical sensor for cd44 by ligand-protein interaction. Anal Chem 91:7078–7085

    Article  CAS  PubMed  Google Scholar 

  17. Pirzada M, Altintas Z (2020) Recent progress in optical sensors for biomedical diagnostics. Micromachines 11:356

    Article  PubMed Central  Google Scholar 

  18. Del Villar I, Zubiate P, Zamarreño CR, Arregui FJ, Matias IR (2017) Optimization in nanocoated D-shaped optical fiber sensors. Opt Express 25:10743–10756

    Article  PubMed  Google Scholar 

  19. TalebiFard S, Schmidt S, Shi W, Wu W, Jaeger NA, Kwok E, Ratner DM, Chrostowski L (2017) Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor, Biomed. Opt Express 8:500–511

    Article  CAS  Google Scholar 

  20. Lin Y-S, Liao S, Liu X, Tong Y, Xu Z, Xu R, Yao D, Yu Y (2019) Tunable terahertz metamaterial by using three-dimensional double split-ring resonators. Opt Laser Technol 112:215–221

    Article  CAS  Google Scholar 

  21. Lannebère S, Campione S, Aradian A, Albani M, Capolino F (2014) Artificial magnetism at terahertz frequencies from three-dimensional lattices of tio 2 microspheres accounting for spatial dispersion and magnetoelectric coupling. JOSA B 31:1078–1086

    Article  Google Scholar 

  22. Wong ZJ, Wang Y, O’Brien K, Rho J, Yin X, Zhang S, Fang N, Yen T-J, Zhang X (2017) Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J Opt, 19:084007

  23. Yu-Chieh C, Ya-Ju C, Yu-Ching C, Bo-Zhi H, Chii-Chang C (2019) A plasmonic refractive index sensor with an ultrabroad dynamic sensing range. Sci Rep (Nature Publisher Group) 9

  24. Zhang X, Qi Y, Zhou P, Gong H, Hu B, Yan C (2018) Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photo Sens 8:367–374

    Article  CAS  Google Scholar 

  25. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  PubMed  Google Scholar 

  26. Zhong Y, Malagari SD, Hamilton T, Wasserman DM (2015) Review of mid-infrared plasmonic materials. J Nanophoto 9:093791

  27. Liu Z, Liu G, Liu X, Fu G (2019) Plasmonic sensors with an ultra-high figure of merit. Nanotechnol 31:115208

  28. Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D, Yu Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25:3675–3681

    Article  PubMed  Google Scholar 

  29. Salemizadeh M, Mahani FF, Mokhtari A (2019) Design of aluminum-based nanoring arrays for realizing efficient plasmonic sensors. JOSA B 36:786–793

    Article  CAS  Google Scholar 

  30. Yang L, Wang J, Yang L-Z, Hu Z-D, Wu X, Zheng G (2018) Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory. Sci Rep 8:1–10

    Google Scholar 

  31. Lu H, Gan X, Mao D, Jia B, Zhao J (2018) Flexibly tunable high-quality-factor induced transparency in plasmonic systems. Sci Rep 8:1–9

    Google Scholar 

  32. Liu L, Xia S-X, Luo X, Zhai X, Yu Y-B, Wang L-L (2018) Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide. Optics Communications 418:27–31

    Article  CAS  Google Scholar 

  33. Liu B, Chen S, Zhang J, Yao X, Zhong J, Lin H, Huang T, Yang Z, Zhu J, Liu S (2018) A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv Mater 30:1706031

    Article  Google Scholar 

  34. He Z, Li H, Zhan S, Li B, Chen Z, Xu H (2015) Tunable multi-switching in plasmonic waveguide with Kerr nonlinear resonator. Sci Rep 5:1–9

    Article  Google Scholar 

  35. Xu H, Li H, Li B, He Z, Chen Z, Zheng M (2016) Influential and theoretical analysis of nano-defect in the stub resonator. Sci Rep 6:1–7

    Google Scholar 

  36. Wang G, Zhang W, Gong Y, Liang J (2014) Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide. IEEE Photonics Technol Lett 27:89–92

    Article  CAS  Google Scholar 

  37. Hokmabadi MP, Philip E, Rivera E, Kung P, Kim SM (2015) Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators. Sci Rep 5:1–11

    Google Scholar 

  38. Matsunaga K, Hirai Y, Neo Y, Matsumoto T, Tomita M (2017) Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure. Sci Rep 7:1–9

    Article  CAS  Google Scholar 

  39. Chen Z, Cui L, Song X, Yu L, Xiao J (2015) High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt Commun 340:1–4

    Article  CAS  Google Scholar 

  40. Chen J, Yuan J, Zhang Q, Ge H, Tang C, Liu Y, Guo B (2018) Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Opt Mater Exp 8:342–347

    Article  CAS  Google Scholar 

  41. Yin X, Hesselink L (2006) Goos-Hänchen shift surface plasmon resonance sensor, Applied Phys Lett 89:261108

  42. Löffler W, Van Exter M, Hooft GT, Eliel E, Hermans K, Broer D, Woerdman J (2010) Polarization-dependent Goos–Hänchen shift at a graded dielectric interface. Opt Commun 283:3367–3370

  43. Qamar S, Zubairy MS (2010) Coherent control of the Goos-Hänchen shift. Physic Rev A 81:023821

  44. Olaya CM, Hayazawa N, Hermosa N, Tanaka T (2020) Angular Goos–Hänchen shift sensor using a gold film enhanced by surface plasmon resonance. J Phys Chem A

  45. Bai Z, Huang G, Liu L, Zhang S (2015) Giant Kerr nonlinearity and low-power gigahertz solitons via plasmon-induced transparency. Sci Rep 5:1–11

    Article  Google Scholar 

  46. Butt M, Khonina S, Kazanskiy N (2018) Hybrid plasmonic waveguide-assisted metal–insulator–metal ring resonator for refractive index sensing. J Mod Opt 65:1135–1140

    Article  CAS  Google Scholar 

  47. Tassin P, Koschny T, Kafesaki M, Soukoulis CM (2012) A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat Photonics 6:259

    Article  CAS  Google Scholar 

  48. Zhang Y, Tang T-T, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820–823

    Article  CAS  PubMed  Google Scholar 

  49. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for grapheme. Nature 490:192–200

  50. Falkovsky L (2008) Optical properties of graphene, Journal of physics: conference series, IOP Publishing. 012004

  51. He Y, Zhang J, Xu W, Guo C, Liu K, Yuan X, Zhu Z (2019) Graphene plasmonically induced analogue of tunable electromagnetically induced transparency without structurally or spatially asymmetry. Sci Rep 9:1–9

    Article  Google Scholar 

  52. Ma Q, Dai J, Luo A, Hong W (2020) Numerical and theoretical study of tunable plasmonically induced transparency effect based on bright–dark mode coupling in graphene metasurface. Nanomaterials 10:232

    Article  CAS  PubMed Central  Google Scholar 

  53. Mokri K, Mozaffari MH (2019) Numerical design of a plasmonic nano-tweezer for realizing high optical gradient force. Opt Laser Technol 119:105620

  54. Eivazi S, Mozaffari MH (2018) Numerical design and investigation of an optically pumped 1.55 μm single quantum dot photonic crystal-based laser. Phot Nanostruct Fundament App 32:42–46

  55. Mozaffari MH, Farmani A (2019) On-chip single-mode optofluidic microresonator dye laser sensor. IEEE Sens J 20:3556–3563

    Article  Google Scholar 

  56. Mozaffari MH, Ebnali-Heidari M, Abaeiani G, Moravvej-Farshi MK (2018) Designing a miniaturized photonic crystal based optofluidic biolaser for lab-on-a-chip biosensing applications. Org Electron 54:184–191

    Article  CAS  Google Scholar 

  57. Mozaffari MH, Ebnali-Heidari M, Abaeiani G, Moravvej-Farshi MK (2017) Photonic crystal optofluidic biolaser. Photonics Nanostruct Fundam Appl 26:56–61

    Article  Google Scholar 

  58. Mokri K, Mohammad HM, Ali F (2021) “Polarization-dependent plasmonic nano-tweezer as a platform for on-chip trapping and manipulation of virus-like particles.” IEEE Transact NanoBiosci

  59. Farhadi S, Miri M, Farmani A (2021) Plasmon-induced transparency sensor for detection of minuscule refractive index changes in ultra-low index materials. Sci Rep 11(1):1–10

    Article  Google Scholar 

  60. Hosseini E, Ali M, Ali F (2021) “Black phosphorous-based nanostructures for refractive index sensing with high figure of merit in the mid-infrared.” Plasmonics 1–8

  61. Azizi B, Mohammad AGS, Ali F (2021) “Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer.” J Comput Electron 1–12

  62. Yari P, Homa F, Ali F (2021) “Steering of guided light with graphene metasurface for refractive index sensing with high figure of merits.” Plasmonics 1–10

  63. Baqir MA et al (2018) Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Opt 57(31):9447–9454

    Article  CAS  PubMed  Google Scholar 

  64. Farmani A, Mir A, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl Surf Sci 453:358–364

    Article  CAS  Google Scholar 

  65. Farmani A, Miri M, Sheikhi MH (2017) Tunable resonant Goos-Hänchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. JOSA B 34(6):1097–1106

    Article  CAS  Google Scholar 

  66. Farmani, A et al (2017) “Design of a tunable graphene plasmonic-on-white graphene switch at infrared range.” Superlattic Microstruct 112: 404–414

  67. Farmani A (2019) Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2):401–407

    Article  CAS  Google Scholar 

  68. Mozaffari MH, Majid E-H, Mohammad Kazem M-F (2019) “A proposal for ultra-sensitive intensity-based biosensing via photonic crystal optofluidic biolaser.” Laser Phys 29(3): 035803

  69. Farmani A, Miri M, Sheikhi MH (2017) Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Optics Communications 391:68–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript in advance.

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

AMRZ: software and data curation. MHM and AF: methodology and investigation. AM: conceptualization, methodology, and writing — review and editing. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Mohammad Hazhir Mozaffari.

Ethics declarations

Ethics Approval

This is a theoretical work which is used foe sensing platform.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanganeh, A.M.R., Farmani, A., Mozaffari, M.H. et al. Design Optimization and Fabrication of Graphene/J-Aggregate Kretschmann-Raether Devices for Refractive Index Sensing Using Plasmon-Induced Transparency Phenomena. Plasmonics 17, 811–821 (2022). https://doi.org/10.1007/s11468-021-01591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01591-7

Keywords

Navigation