Skip to main content
Log in

High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel nanoscale structure for high sensitivity sensing which consists of a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators (GSNR) based on edge mode is investigated in detail. By altering the Fermi energy level of the graphene, the plasmon-induced transparency (PIT) window from the destructive interference between a radiative square-nanoring resonator and a dark square-nanoring resonator can be easily tailored. The coupled mode theory (CMT) is used to show that the theoretical results agree well with the finite difference time domain (FDTD) simulations. This nanosensor yields a ultrahigh sensitivity of ∼2600 nm/refractive index unit (RIU) and a figure of merit (FOM) of ∼54 in the mid-infrared (MIR) spectrum. The revealed results indicate that the Fermi energy level of the graphene and the coupling distance play important roles in optimizing the sensing properties. Our proposed structure exerts a peculiar fascination on the realization of ultra-compact graphene plasmonic nanosensor in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673

    Article  CAS  Google Scholar 

  2. Longdell JJ, Fraval E, Sellars MJ, Manson NB (2005) Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys Rev Lett 95:063601

    Article  CAS  Google Scholar 

  3. Yannopapas V, Paspalakis E, Vitanov NV (2009) Electromagnetically induced transparency and slow light in an array of metallic nanoparticles. Phys Rev B 80:035104

    Article  Google Scholar 

  4. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902

    Article  Google Scholar 

  5. Duan X, Chen S, Cheng H, Li Z, Tian J (2013) Dynamically tunable plasmonically induced transparency by planar hybrid metamaterial. Opt Lett 38:483–485

    Article  Google Scholar 

  6. Liu G, Zhai X, Wang LL, Wang BX, Lin Q, Shang X (2016) Actively tunable fano resonance based on a T-shaped graphene nanodimer. Plasmonics 11:381–387

    Article  CAS  Google Scholar 

  7. Shang X, Zhai X, Li X, Wang L, Wang B, Liu G (2016) Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling. Plasmonics 11:419–423

    Article  CAS  Google Scholar 

  8. Xiao S, Wang T, Liu Y, Han X, Yan X (2016) An Ultrasensitive and multispectral refractive index sensor design based on quad-supercell metamaterials. Plasmonics. doi:10.1007/s11468-016-0248-8

    Google Scholar 

  9. Yang X, Yu M, Kwong DL, Wong CW (2009) All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys Rev Lett 102:173902

    Article  Google Scholar 

  10. Wang B, Wang T, Tang J, Li X, Zhu Y (2014) A dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled with a waveguide system. J Appl Phys 116:133101

    Article  Google Scholar 

  11. Han X, Wang T, Li X, Zhu Y (2015) Dynamically tunable by kerr effect multichannel filter based on plasmon induced transparencies at optical communication range. Plasmonics. doi:10.1007/s11468-015-0102-4

    Google Scholar 

  12. Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Materials today 9:20–27

    Article  CAS  Google Scholar 

  13. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  14. Nikitin AY, Guinea F, Garca-Vidal FJ, Martn-Moreno L (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84:161407

    Article  Google Scholar 

  15. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  CAS  Google Scholar 

  16. Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12:1482–1485

    Article  Google Scholar 

  17. Ooi KJA, Chu HS, Bai P, Ang LK (2014) Electro-optical graphene plasmonic logic gates. Opt Lett 39:1629–1632

    Article  CAS  Google Scholar 

  18. Tao J, Yu XC, Hu B, Dubrovkin A, Wang QJ (2014) Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth. Opt Lett 39:271–274

    Article  CAS  Google Scholar 

  19. Zhang L, Yang J, Fu X, Zhang M (2013) Graphene disk as an ultra compact ring resonator based on edge propagating plasmons. Appl Phys Lett 163114:103

    Google Scholar 

  20. Li HJ, Wang LL, Liu JQ, Huang ZR, Sun B, Zhai X (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 211104:103

    Google Scholar 

  21. Xiao S, Wang T, Liu Y, Xu C, Han X, Yan X (2016) Tunable light trapping and absorption enhancement with graphene ring arrays. doi:10.1039/C6CP03731C

  22. Bao Q, Zhang H, Ni Z, Wang Y., Polavarapu L, Shen Z, Xu Q H, Tang D, Loh K P (2011) Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res 4:297–307

    Article  CAS  Google Scholar 

  23. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37:3780–3782

    Article  Google Scholar 

  24. Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens J 15:6313–6317

    Article  CAS  Google Scholar 

  25. Huang Y, Min C, Dastmalchi P, Veronis G (2015) Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt Exp 23:14922–14936

    Article  CAS  Google Scholar 

  26. Li F, Jackson SD, Grillet C, Magi E, Hudson D, Madden SJ, Moghe Y, Brien C O, Read A, Duvall SG (2011) Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt Express 19:15212–15220

    Article  CAS  Google Scholar 

  27. Lynch DW, Hunter WR (1998) Handbook of optical constants of solids. Academic, pp 653–657

  28. Zeng C, Guo J, Liu X (2014) High-contrast electro-optic modulation of spatial light induced by graphene-integrated Fabry-Prot microcavity. Appl Phys Lett 105:121103

    Article  Google Scholar 

  29. Zhang T, Chen L, Wang B, Li X (2015) Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies. Sci Rep 5:11195

    Article  CAS  Google Scholar 

  30. Han X, Wang T, Li XM, Xiao SY, Zhu YJ (2015) Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate. Opt Express 23:31945–31955

    Article  CAS  Google Scholar 

  31. Xu Q, Wu MY, Schneider G F, Houben L, Malladi SK, Dekker C, Yucelen E, Dunin-Borkowski RE, Zandbergen H W (2013) Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. ACS Nano 7:1566– 1572

    Article  CAS  Google Scholar 

  32. Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Ibrahimi AT, Jiang Z, Conrad E, Berger C, Tegenkamp C, Heer W A (2014) Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506:349–354

    Article  CAS  Google Scholar 

  33. Han X, Wang T, Li XM, Liu B Y, He Y, Tang J (2015) Ultrafast and low-power dynamically tunable plasmon-induced transparencies in compact aperture-coupled rectangular resonators. J Lightw Technol 33:3083–3090

    Article  CAS  Google Scholar 

  34. Lin Q, Zhai X, Wang L, Wang B, Liu G, Xia S (2015) Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings. EPL 111:34004

    Article  Google Scholar 

  35. Zhan S, Peng Y, He Z, Li B, Chen Z, Xu H, Li H (2016) Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci Rep 6:22428

    Article  CAS  Google Scholar 

  36. Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Google Scholar 

Download references

Acknowledgments

The author Xicheng Yan expresses his deepest gratitude to his advisor Tao Wang for providing guidance during the whole project. This work is supported by the National Natural Science Foundation of China (Grant No. 61006045 and 61376055), and the Fundamental Research Funds for the Central Universities (HUST: 2016YXMS024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Wang, T., Han, X. et al. High Sensitivity Nanoplasmonic Sensor Based on Plasmon-Induced Transparency in a Graphene Nanoribbon Waveguide Coupled with Detuned Graphene Square-Nanoring Resonators. Plasmonics 12, 1449–1455 (2017). https://doi.org/10.1007/s11468-016-0405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0405-0

Keywords

Navigation