Skip to main content
Log in

Tunable Multi-Fano Resonances in MDM-Based Side-Coupled Resonator System and its Application in Nanosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, two Fano resonances are achieved in the proposed plasmonic system. Theoretical analysis and simulation results show that two discrete states coupled with a continua lead to these Fano resonances. The discrete states are provided by the side-coupled square cavity, and a baffle plate placed in metal-dielectric-metal waveguide is used to produce a continuous transmission spectrum. The resonant wavelengths and the linewidth of these Fano resonances can be easily tuned by adjusting the parameters of system. This system exhibits high sensitivities as high as 850 and 1120 nm/RIU corresponding to two Fano resonances, and the figure of merit can reach to 1.7 × 105 by optimizing the system. By introducing another square cavity, four Fano resonances are obtained which originate from four discrete states coupled with continua, and they can be tuned independently. The flexible multi-Fano resonances system has significant application bio-nanosensor, nonlinear, and slow light devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. Miroshnichenko AE, Flach S, Kivshar YS (2009) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  Google Scholar 

  2. Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  CAS  Google Scholar 

  3. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Science & Applications 4(6):e249

    Article  Google Scholar 

  4. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878

    Article  CAS  Google Scholar 

  5. Hao F, Sonnefraud Y, Van DP, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant lspr sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  6. Hao F, Nordlander P, Sonnefraud Y, Van DP, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3):643–652

    Article  CAS  Google Scholar 

  7. Chen J, Li Z, Yue S, Xiao J, Gong Q (2012) Plasmon-induced transparency in asymmetric t-shape single slit. Nano Lett 12(5):2494–2498

    Article  CAS  Google Scholar 

  8. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P et al (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189

    Article  CAS  Google Scholar 

  9. Yang ZJ, Wang QQ, Lin HQ (2013) Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle clusters. Appl Phys Lett 103(11):111115

    Article  Google Scholar 

  10. Wang F, Wang X, Zhou H, Zhou Q, Hao Y, Jiang X, Yang J (2009) Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer. Opt Express 17(9):7708–7716

    Article  CAS  Google Scholar 

  11. Artar A, Yanik AA, Altug H (2011) Directional double Fano resonances in plasmonic hetero-oligomers. Nano Lett 11(9):3694–3700

    Article  CAS  Google Scholar 

  12. Wu C, Khanikaev AB, Shvets G (2011) Broadband slow light metamaterial based on a double-continuum Fano resonance. Phys Rev Lett 106(10):152–161

    Article  Google Scholar 

  13. Zhan S, Peng Y, He Z, Li B, Chen Z, Xu H et al (2016) Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci Rep 6

  14. Wang D, Yu X, Yu Q (2013) Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures. Appl Phys Lett 103(5):053117

    Article  Google Scholar 

  15. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4(2):83–91

    Article  CAS  Google Scholar 

  16. Verhagen E, Dionne JA, Kuipers LK, Atwater HA, Polman A (2008) Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides. Nano Lett 8(9):2925–2929

    Article  CAS  Google Scholar 

  17. Kocabaş ŞE, Veronis G, Miller DAB, Fan S (2008) Modal analysis and coupling in metal-insulator-metal waveguides. Phys Rev B 79(3):035120

    Article  Google Scholar 

  18. Choo H, Kim MK, Staffaroni M, Seok TJ, Bokor J, Cabrini S et al (2012) Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photon 6(12):838–844

    Article  CAS  Google Scholar 

  19. Chen J, Li Z, Zhang R, Deng Z, Xiao J, Gong Q (2013) Response line-shapes in compact coupled plasmonic resonator systems. Plasmonics 8:1129–1134

    Article  CAS  Google Scholar 

  20. Chen Z, Cao X, Song X, Wang L, Yu L (2015) Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11:307–313

    Article  Google Scholar 

  21. Wen K, Hu Y, Chen L, Zhou J, Lei L, Guo Z (2014) Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10:27–32

    Article  Google Scholar 

  22. Chen J, Sun C, Gong Q (2014) Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide. Opt Lett 39(1):52–55

    Article  Google Scholar 

  23. Qi J, Chen Z, Chen J, Li Y, Qiang W, Xu J et al (2014) Independently tunable double Fano resonances in asymmetric mim waveguide structure. Opt Express 22(12):14688–14695

    Article  Google Scholar 

  24. Chen Z, Song X, Duan G, Wang L (2015) Multiple Fano resonances control in MIM side-coupled cavities systems. IEEE Photonics J 7(3):1–10

    Google Scholar 

  25. Zhang Y, Li S, Zhang X, Chen Y, Wang L, Zhang Y et al (2016) Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt Commun 370:203–208

    Article  CAS  Google Scholar 

  26. Yun B, Hu G, Cui Y (2013) Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8:267–275

    Article  CAS  Google Scholar 

  27. Manolatou C, Khan MJ, Fan S, Villeneuve PR (1999) Coupling of modes analysis of resonant channel add-drop filters. IEEE J Quantum Elect 35:1322–1331

    Article  CAS  Google Scholar 

  28. Suh W, Wang Z, Fan S (2004) Temporal pled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J Quantum Elect 40:1511–1518

    Article  CAS  Google Scholar 

  29. Noual A, Pennec Y, Akjouj A, Djafari-Rouhani B, Dobrzynski L (2009) Nanoscale plasmon waveguide including cavity resonator. J Phys-Condens Mat 21(37):375301

    Article  CAS  Google Scholar 

  30. Bertolotti M (1984) Waves and fields in optoelectronics. Prentice-Hall, New Jersey

    Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  32. Lai G, Liang R, Zhang Y, Bian Z, Yi L, Zhan G et al (2015) Double plasmonic nanodisks design for electromagnetically induced transparency and slow light. Opt Express 23(5):6554–6561

    Article  CAS  Google Scholar 

  33. Lu H, Liu X, Gong Y, Mao D, Wang G (2011) Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. JOSA B 28(7):1616–1621

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and technology of China (Grant No. 2016YFA0301300), the National Natural Science Foundation of China (Grant 11374041, Grant 11574035 and Grant 11404030), and the Fund of State Key Laboratory of Information Photonics, and the Optical Communications (Beijing University of Posts and Telecommunications), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Song, X., Chen, Z. et al. Tunable Multi-Fano Resonances in MDM-Based Side-Coupled Resonator System and its Application in Nanosensor. Plasmonics 12, 1665–1672 (2017). https://doi.org/10.1007/s11468-016-0432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0432-x

Keywords

Navigation