Skip to main content
Log in

Response Line-Shapes in Compact Coupled Plasmonic Resonator Systems

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A compact plasmonic coupled-resonator system, consisting of a stub resonator and baffles in the metal–insulator–metal waveguide, is numerically investigated with the finite element method. Simulations show that sharp and asymmetric response line-shapes can occur in the system. The asymmetric line-shapes in the transmission spectra depend on the relative positions of the resonant wavelengths between the single-stub resonator and the inner resonator constructed by the baffle and the stub resonator, while the other part of the transmission spectra (except the asymmetric part) maintains the spectral features of the structure constructed by the baffles. An analytic model and a relative phase analysis based on the scattering matrix theory are used to describe and explain this phenomenon. These sharp and asymmetric response line-shapes are important for improving the nano-plasmonic devices’ performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nat 424:824–830

    Article  CAS  Google Scholar 

  2. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4:83–91

    Article  CAS  Google Scholar 

  3. Chen JJ, Li Z, Yue S, Xiao JH, Gong QH (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498

    Article  CAS  Google Scholar 

  4. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182(2):539–554

    Article  Google Scholar 

  5. Veronis G, Fan S (2005) Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  Google Scholar 

  6. Dionne JA, Lezec HJ, Atwater HA (2006) Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett 6(9):1928–1932

    Article  CAS  Google Scholar 

  7. Lezec HJ, Dionne JA, Atwater HA (2007) Negative refraction at visible frequencies. Science 316(5823):430–432

    Article  CAS  Google Scholar 

  8. Neutens P, Dorpe PV, Vlaminck LD, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat Photon 3:283–286

    Article  CAS  Google Scholar 

  9. Walters RJ, van Loon RVA, Brunets I, Schmitz J, Polman A (2010) A silicon-based electrical source of surface plasmon polaritons. Nat Mater 9:21–25

    Article  CAS  Google Scholar 

  10. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876

    Article  Google Scholar 

  11. Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Opt Express 16(21):16314–16325

    Article  Google Scholar 

  12. Lu H, Liu XM, Mao D, Wang LR, Gong YK (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927

    Article  CAS  Google Scholar 

  13. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101

    Article  CAS  Google Scholar 

  14. Guo Y, Yan L, Pan W, Luo B, Wen K, Guo Z, Li H, Luo X (2011) A plasmonic splitter based on slot cavity. Opt Express 19(15):13831–13838

    Article  Google Scholar 

  15. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36:1500–1502

    Article  Google Scholar 

  16. Noual A, Akjouj A, Pennec Y, Gillet J-N, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. N J Phys 11:103020

    Article  Google Scholar 

  17. Tao J, Huang XG, Zhu JH (2010) A wavelength demultiplexing structure based on metal–dielectric–metal plasmonic nano-capillary resonators. Opt Express 18(11):11111–11116

    Article  Google Scholar 

  18. Chen JJ, Li Z, Li J, Gong QH (2011) Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. Opt Express 19:9976–9985

    Article  CAS  Google Scholar 

  19. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878

    Article  CAS  Google Scholar 

  20. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  21. Kekatpure RD, Barnard ES, Cai W, Brongersma ML (2010) Phase-coupled plasmon induced transparency. Phys Rev Lett 104(24):243902

    Article  Google Scholar 

  22. Fan S (2002) Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl Phys Lett 80:908–910

    Article  CAS  Google Scholar 

  23. Xu Y, Li Y, Lee RK, Yariv A (2000) Scattering-theory analysis of waveguide-resonator coupling. Phys Rev E 62:7389

    Article  CAS  Google Scholar 

  24. Haus HA, Lai Y (1991) Narrow-band distributed feedback reflector design. J Lightwave Technol 9:754

    Article  CAS  Google Scholar 

  25. Haus HA (1984) Waves and fields in optoelectronics. Prentice Hall, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos. 11204018, 61177085, 60937003, 51172030, 11134001, and 90921008) and the National Basic Research Program of China (grant nos. 2010CB923200, 2009CB930504, and 2013CB328704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Li, Z., Zhang, R. et al. Response Line-Shapes in Compact Coupled Plasmonic Resonator Systems. Plasmonics 8, 1129–1134 (2013). https://doi.org/10.1007/s11468-013-9520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9520-3

Keywords

Navigation