Skip to main content
Log in

Temperature-Regulated Surface Plasmon Resonance Imaging System for Bioaffinity Sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We describe a temperature-regulated surface plasmon resonance (SPR) imaging biosensor in this article. The sample temperature can be regulated for specific requirements of the bioaffinity sensing, and stabilized to suppress the measurement noise caused by temperature fluctuations. The water thermo optic coefficient is measured to test the temperature regulation performance. The protein interaction is monitored to demonstrate the feasibility of this system for real-time biomolecular interaction analysis. This temperature-regulated SPR imaging biosensor can be readily implemented by adding the common water path and peristaltic pump to the conventional SPR imaging system, which may provide an economical and convenient scheme to improve the analysis accuracy and quality of bioaffinity sensing using SPR sensing platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensor Actuat B-Chem 54:3–15

    Article  CAS  Google Scholar 

  2. Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17:151–61

    Article  CAS  Google Scholar 

  3. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–93

    Article  CAS  Google Scholar 

  4. Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9:809–24

    Article  CAS  Google Scholar 

  5. Smith EA, Thomas WD, Kiessling LL, Corn RM (2003) Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc 125:6140–8

    Article  CAS  Google Scholar 

  6. Gifford LK, Sendroiu IE, Corn RM, Luptak A (2010) Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces. J Am Chem Soc 132:9265–7

    Article  CAS  Google Scholar 

  7. Chong XY, Liu L, Liu ZY, Ma SH, Guo J, Ji YH, He YH (2013) Detect the hybridization of single-stranded DNA by parallel scan spectral surface plasmon resonance imaging. Plasmonics 8:1185–91

    Article  CAS  Google Scholar 

  8. Lin H, Wang LP, Dong JX, Xu XY, Liu L, Zhang L, Huang Q, Zhang XH, Liu QQ (2015) Study on trace sample of chronic skin ulcer with a symmetrical optical waveguide-based surface plasmon resonance biosensor. Plasmonics in press. doi: 10.1007/s11468-015-9983-5

  9. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–39

    Article  CAS  Google Scholar 

  10. O'Brien MJ, Perez-Luna VH, Brueck SRJ, Lopez GP (2001) A surface plasmon resonance array biosensor based on spectroscopic imaging. Biosens Bioelectron 16:97–108

    Article  Google Scholar 

  11. Shi H, Liu ZY, Wang XX, Guo J, Liu L, Luo L, Guo JH, Ma H, Sun SQ, He YH (2013) A symmetrical optical waveguide based surface plasmon resonance biosensing system. Sensor Actuat B-Chem 185:91–6

    Article  CAS  Google Scholar 

  12. Homola J, Lu HB, Nenninger GG, Dostalek J, Yee SS (2001) A novel multichannel surface plasmon resonance biosensor. Sensor Actuat B-Chem 76:403–10

    Article  CAS  Google Scholar 

  13. Dostalek J, Vaisocherova H, Homola J (2005) Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sensor Actuat B-Chem 108:758–64

    Article  CAS  Google Scholar 

  14. Dyankov G, Zekriti M, Bousmina (2012) Dual-mode surface-plasmon sensor based on bimetallic film. Appl Opt 51:2451–6

    Article  CAS  Google Scholar 

  15. Zhang PF, Liu L, He YH, Ji YH, Ma H (2015) Self-referenced plasmon waveguide resonance sensor using different waveguide modes. J Sens 2015:945908

    Google Scholar 

  16. Zhang PF, Liu L, He YH, Shen ZY, Guo J, Ji YH, Ma H (2014) Non-scan and real-time multichannel angular surface plasmon resonance imaging method. Appl Opt 53:6037–42

    Article  Google Scholar 

  17. Liu L, Ma SH, Ji YH, Chong XY, Liu ZY, He YH, Guo JH (2011) A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor. Rev Sci Instrum 82:023019

    Google Scholar 

  18. Mao HB, Yang TL, Cremer PS (2002) A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. J Am Chem Soc 124:4432–5

    Article  CAS  Google Scholar 

  19. Swinney K, Bornhop DJ (2000) Detection in capillary electrophoresis. Electrophoresis 21:1239–50

    Article  CAS  Google Scholar 

  20. Zhang PF, Liu L, He YH, Zhou YF, Ji YH, Ma H (2015) Noninvasive and real-time plasmon waveguide resonance thermometry. Sensors 15:8481–98

    Article  CAS  Google Scholar 

  21. Shankar P, Viswanathan NK (2011) All-optical thermo-plasmonic device. Appl Opt 50:5966–9

    Article  CAS  Google Scholar 

  22. Chiang HP, Chen CW, Wu JJ, Li HL, Lin TY, Sanchez EJ, Leung PT (2007) Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface. Thin Solid Films 515:6953–61

    Article  CAS  Google Scholar 

  23. Moreira CS, Lima AMN, Neff H, Thirstrup C (2008) Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold-water interface. Sensor Actuat B-Chem 134:854–62

    Article  CAS  Google Scholar 

  24. Bahrami F, Maisonneuve M, Meunier M, Aitchison JS, Mojahedi M (2013) An improved refractive index sensor based on genetic optimization of plasmon waveguide resonance. Opt Express 21:20863–72

    Article  Google Scholar 

  25. Zeder-Lutz G, Zuber E, Witz J, Regenmortel MHV (1997) Thermodynamic analysis of antigen-antibody binding using biosensor measurement at different temperatures. Anal Biochem 246:123–32

    Article  CAS  Google Scholar 

  26. Hottin J, Wijaya E, Hay L, Maricot S, Bouazaoui M, Vilcot JP (2013) Comparison of gold and silver/gold bimetallic surface for highly sensitive near-infrared SPR sensor at 1550 nm. Plasmonics 8:619–24

    Article  CAS  Google Scholar 

  27. Naimushin AN, Soelberg SD, Bartholomew DU, Elkind JL, Furlong CE (2003) A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sensor Actuat B-Chem 96:253–60

    Article  CAS  Google Scholar 

  28. Zhang PF, Liu L, He YH, Xu ZH, Ji YH, Ma H (2015) One-dimensional angular surface plasmon resonance imaging based array thermometer. Sensor Actuat B-Chem 207:254–61

    Article  CAS  Google Scholar 

  29. Swann S (1988) Magnetron sputtering. Phys Technol 19:67–75

    Article  CAS  Google Scholar 

  30. Ono T, Saitoh H, Esashi M (1997) Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy. Appl Phys Lett 70:1852–4

    Article  CAS  Google Scholar 

  31. Ma H, Hao X, Ma J, Yang Y, Huang S, Chen F, Wang Q, Zhang D (2002) Bias voltage dependence of properties for ZnO: Al films deposited on flexible substrate. Surf Coat Technol 161:58–61

    Article  CAS  Google Scholar 

  32. Liu L, Guo J, He YH, Zhang PF, Zhang YL, Guo JH (2015) Study on the despeckle methods in angular surface plasmon resonance imaging sensors. Plasmonics 10:729–37

    Article  Google Scholar 

  33. Maier JS, Walker SA, Fantini S, Franceschini MA, Gratton E (1994) Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared. Opt Lett 19:2062–4

    Article  CAS  Google Scholar 

  34. Zhou YF, Zhang PF, He YH, Xu ZH, Liu L, Ji YH, Ma H (2014) Plasmon waveguide resonance sensor using an Au-MgF2 structure. Appl Opt 53:6344–50

    Article  Google Scholar 

  35. Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17:16505–17

    Article  CAS  Google Scholar 

  36. Springer T, Bockova M, Homola J (2013) Label-free biosensing in complex media: a referencing approach. Anal Chem 85:5637–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible with the financial support from NSFC China (61275188, 61378089, 61361160416), the 863 project, China, Shenzhen International cooperation project, and the Technology Development Program of Shenzhen City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Liu, L., He, Y. et al. Temperature-Regulated Surface Plasmon Resonance Imaging System for Bioaffinity Sensing. Plasmonics 11, 771–779 (2016). https://doi.org/10.1007/s11468-015-0108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0108-y

Keywords

Navigation