Skip to main content

Surface Plasmon Resonance Biosensors Based on Kretschmann Configuration: Basic Instrumentation and Applications

  • Chapter
  • First Online:
Recent Advances in Plasmonic Probes

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 33))

Abstract

Surface Plasmon Resonance (SPR) offers a powerful tool for label-free and noninvasive characterization of biomolecular interactions. To date, several experimental configurations, based on two fundamental physical phenomena, e.g., attenuated total reflection and diffraction, have been developed to measure the SPR signal generated due to the resonant interactions between incident light and plasma waves on the metal surface. These configurations are divided into three categories: grating-based, prism-based, and waveguide-based coupling. Among such techniques, one of the prism-based SPR coupling schemes, popularly known as Kretschmann configuration, is most widely used due to its high sensitivity, operational simplicity, lower cost, and real-time detection. This chapter explains the basic instrumentation and reviews the recent trends in the developments of Kretschmann configuration-based SPR biosensors with its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Tonks, I. Langmuir, A general theory of the plasma of an arc. Phys. Rev. 34, 876 (1929)

    Article  ADS  Google Scholar 

  2. G. Lister, Irving Langmuir and the light bulb. Plasma Sources Sci. Technol. 18(23), 6926 (2008)

    Google Scholar 

  3. J.E. Allen, The plasma–sheath boundary: Its history and Langmuir’s definition of the sheath edge. Plasma Sources Sci. Technol. 18, 014004 (2008)

    Article  ADS  Google Scholar 

  4. E.N. Adams, Plasma oscillations in metals. Phys. Rev. 98, 947 (1955)

    Article  MATH  ADS  Google Scholar 

  5. R. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. London Edinburgh Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902)

    Article  Google Scholar 

  6. J. Zenneck, Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie. Ann. Phys. (in German) 328(10), 846–866 (1907)

    Article  MATH  ADS  Google Scholar 

  7. A. Sommerfeld, Über die Ausbreitung der Wellen in der drahtlosen Telegraphie. Ann. Phys. 333(4), 665–736 (1909)

    Article  MATH  Google Scholar 

  8. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)

    Article  ADS  Google Scholar 

  9. C.J. Bouwkamp, On Sommerfeld’s surface wave. Phys. Rev. 80, 294 (1950)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. R. Hughes, Theoretical practice: The Bohm-Pines quartet. Perspect. Sci. 14, 457–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)

    Article  ADS  Google Scholar 

  12. E. Kretschmann, H. Raether, Radiative decay of nonradiative surface plasmons excited by light. Z. Nat. A 23, 2135–2136 (1968)

    Google Scholar 

  13. P. Pattnaik, Surface plasmon resonance. Appl. Biochem. Biotechnol. 126, 79–92 (2005)

    Article  Google Scholar 

  14. M. Piliarik, J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors, vol 4 (Springer, Berlin, 2006)

    Book  Google Scholar 

  15. N. Bhalla, P. Jolly, N. Formisano, P. Estrela, Introduction to biosensors. Essays Biochem. 60(1), 1–8 (2016)

    Article  Google Scholar 

  16. C. Nylander, B. Liedberg, T. Lind, Gas detection by means of surface plasmons resonance. Sensors Actuators 3, 79–88 (1982)

    Article  Google Scholar 

  17. B. Liedberg, C. Nylander, I. Lunström, Surface plasmons resonance for gas detection and biosensing. Sensors Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  18. B. Liedberg, C. Nylander, I. Lunström, Biosensing with surface plasmon resonance—how it all started. Biosens. Bioelectron. 10, 1–9 (1995)

    Article  Google Scholar 

  19. P. Mehrotra, Biosensors and their applications—A review. J. Oral Biol. Craniofac. Res. 6, 153–159 (2016)

    Article  Google Scholar 

  20. P. Singh, S.P.R. Biosensors, Historical perspectives and current challenges. Sensors Actuators B Chem. 229, 110–130 (2016)

    Article  Google Scholar 

  21. M. Cooper, Optical biosensors: Where next and how soon? Drug Discov. Today 11(23–24), 1061–1067 (2006)

    Article  Google Scholar 

  22. R. Schasfoort, Surface plasmon resonance instruments, in Handbook of Surface Plasmon Resonance, (Royal Society of Chemistry, Cambridge, 2017), pp. 60–105

    Chapter  Google Scholar 

  23. H. Nguyen, J. Park, S. Kang, M. Kim, Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 15(5), 10481–10510 (2015)

    Article  ADS  Google Scholar 

  24. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008)

    Article  Google Scholar 

  25. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, G. Dujardin, Excitation of propagating surface plasmons with a scanning tunnelling microscope. Nanotechnology 22(17), 175201 (2011)

    Article  ADS  Google Scholar 

  26. P. Bharadwaj, A. Bouhelier, L. Novotny, Electrical excitation of surface plasmons. Phys. Rev. Lett. 106(22), 226802 (2011)

    Article  ADS  Google Scholar 

  27. B. Diaconescu, K. Pohl, L. Vattuone, L. Savio, P. Hofmann, V.M. Silkin, J.M. Pitarke, E.V. Chulkov, P.M. Echenique, D. Farìas, M. Rocca, Low-energy acoustic plasmons at metal surfaces. Nature 448, 57–59 (2007)

    Article  ADS  Google Scholar 

  28. D. Hernández, J. Velazquez-Gonzalez, D. Luna-Moreno, M. Torres-Cisneros, I. Hernandez-Romano, Prism-based surface plasmon resonance for dual-parameter sensing. IEEE Sensors J. 18(10), 4030–4037 (2018)

    Article  ADS  Google Scholar 

  29. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, in Springer Tracts in Modern Physics, vol. 111, (Springer, Berlin, 1988), pp. 1–3

    Google Scholar 

  30. T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85(24), 5833–5835 (2004)

    Article  ADS  Google Scholar 

  31. H. Ahn, H. Song, J. Choi, K. Kim, A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches. Sensors 18(1), 98 (2018)

    ADS  Google Scholar 

  32. J. Zhang, L. Zhang, W. Xu, Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 45(11), 113001 (2012)

    Article  ADS  Google Scholar 

  33. M. Puiu, C. Bala, SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 16(6), 870 (2016)

    Article  ADS  Google Scholar 

  34. Y. Zhang, C. Min, X. Dou, X. Wang, H.P. Urbach, M.G. Somekh, X. Yuan, Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci. Appl. 10, 59 (2021)

    Article  ADS  Google Scholar 

  35. Y. Yin, S. Xu, T. Li, Y. Yin, Y. Xia, J. Yin, 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition. Sci. Rep. 7(1), 1–9 (2017)

    Article  Google Scholar 

  36. S. Deng, P. Wang, X. Yu, Phase-sensitive surface plasmon resonance sensors: Recent progress and future prospects. Sensors 17(15), 2819 (2017)

    Article  ADS  Google Scholar 

  37. D.J. Griffiths, Introduction to Electrodynamics (Cambridge University Press, Cambridge, 2018)

    Google Scholar 

  38. J. Homola, S.Y. Sinclair, G. Gauglitz, Surface plasmon resonance sensors: Review. Sensors Actuators B 54, 3–15 (1999)

    Article  Google Scholar 

  39. V. Yesudasu, H. Pradhan, R. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon 7(3), e06321 (2021)

    Article  Google Scholar 

  40. D. Wang, J. Loo, J. Chen, Y. Yam, S. Chen, H. He, S. Kong, H. Ho, Recent advances in surface plasmon resonance imaging sensors. Sensors 19(6), 1266 (2019)

    Article  ADS  Google Scholar 

  41. A. Vengurlekar, T. Ishihara, Surface plasmon enhanced photon drag in metal films. Appl. Phys. Lett. 87, 091118 (2005)

    Article  ADS  Google Scholar 

  42. J. Homola, I. Koudela, S.S. Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison. Chem. Sensors Actuators B 54, 16–24 (1999)

    Article  Google Scholar 

  43. B. Prabowo, A. Purwidyantri, K. Liu, Surface plasmon resonance optical sensor: A review on light source technology. Biosensors 8(3), 80 (2018)

    Article  Google Scholar 

  44. S. Patching, Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochim. Biophys. Acta Biomembranes 1838(1), 43–55 (2014)

    Article  Google Scholar 

  45. R. Kashyap, G. Nemova, Surface plasmon resonance-based fiber and planar waveguide sensors. J. Sensors 2009, 645162 (2009)

    Article  Google Scholar 

  46. J. Homola, S.S. Yee, Novel polarization control scheme for spectral surface plasmon resonance sensors. Sensors Actuators B Chem. 51(1–3), 331–339 (1998)

    Article  Google Scholar 

  47. H. Gwon, S. Lee, Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Mater. Trans. 51(6), 1150–1155 (2010)

    Article  Google Scholar 

  48. X. Guo, Surface plasmon resonance based biosensor technique: A review. J. Biophotonics 5(7), 483–501 (2012)

    Article  Google Scholar 

  49. C. Miyazaki, F. Shimizu, M. Ferreira, Surface plasmon resonance (SPR) for sensors and biosensors, in Nanocharacterization Techniques, (William Andrew Publishing, Oxford, 2017), pp. 183–200

    Chapter  Google Scholar 

  50. A. Kabashin, S. Patskovsky, A. Grigorenko, Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt. Express 17(23), 21191–21204 (2009)

    Article  ADS  Google Scholar 

  51. M. Ritzefeld, N. Sewald, Real-time analysis of specific protein-DNA interactions with surface plasmon resonance. J. Amino Acids 2012, 816032 (2012)

    Article  Google Scholar 

  52. T.M. Davis, W.D. Wilson, Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data. Anal. Biochem. 284(2), 348–353 (2000)

    Article  Google Scholar 

  53. B. Gupta, A. Shrivastav, S. Usha, Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting. Sensors 16(9), 1381 (2016)

    Article  ADS  Google Scholar 

  54. M. Hutley, D. Maystre, The total absorption of light by a diffraction grating. Opt. Commun. 19(3), 431–436 (1976)

    Article  ADS  Google Scholar 

  55. R. Boruah, D. Mohanta, A. Choudhury, P. Nath, G. Ahmed, Surface plasmon resonance-based protein bio-sensing using a Kretschmann configured double prism arrangement. IEEE Sensors J. 15(12), 6791–6796 (2015)

    Article  ADS  Google Scholar 

  56. S. Rossi, E. Gazzola, P. Capaldo, G. Borile, F. Romanato, Grating-coupled surface plasmon resonance (GC-SPR) optimization for phase-interrogation biosensing in a microfluidic chamber. Sensors 18(5), 1621 (2018)

    Article  ADS  Google Scholar 

  57. A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors J. 7(8), 1118–1129 (2007)

    Article  ADS  Google Scholar 

  58. J. Huang, C. Lee, H. Lin, T. Chuang, W. Wang, R. Juang, C. Wang, C. Lee, S. Lin, C. Lin, A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection. Biosens. Bioelectron. 22(4), 519–525 (2006)

    Article  Google Scholar 

  59. G. Ruffato, G. Zacco, F. Romanato, Innovative exploitation of grating-coupled surface plasmon resonance for sensing, in Plasmonics: Principles and Applications, (InTechOpen, London, 2012), pp. 419–444

    Google Scholar 

  60. S. Roh, T. Chung, B. Lee, Overview of the characteristics of micro-and nano-structured surface plasmon resonance sensors. Sensors 11(2), 1565–1588 (2011)

    Article  ADS  Google Scholar 

  61. P. Chimento, Two-dimensional optics: Diffraction and dispersion of surface plasmons, 22 May 2013 [Online]. Available: https://scholarlypublications.universiteitleiden.nl/access/item%3A2899347/view. Accessed 2-8-2021

  62. M. Piliarik, H. Vaisocherová, J. Homola, A new surface plasmon resonance sensor for high-throughput screening applications. Biosens. Bioelectron. 20(10), 2104–2110 (2005)

    Article  Google Scholar 

  63. C.L. Wong, M. Olivo, Surface plasmon resonance imaging sensors: A review. Plasmonics 9(4), 809–824 (2014)

    Article  Google Scholar 

  64. C. Howe, K. Webb, S. Abayzeed, D. Anderson, C. Denning, N. Russell, Surface plasmon resonance imaging of excitable cells. J. Phys. D. Appl. Phys. 52(10), 104001 (2019)

    Article  ADS  Google Scholar 

  65. C.L. Wong, G.C.K. Chen, X. Li, B.K. Ng, P. Shum, P. Chen, Z. Lin, C. Lin, M. Olivo, Colorimetric surface plasmon resonance imaging (SPRI) biosensor array based on polarization orientation. Biosens. Bioelectron. 47, 545–552 (2013)

    Article  Google Scholar 

  66. B. Sun, X. Wang, Z. Huang, Study on intensity-modulated surface plasmon resonance array sensor based on polarization control, in 2010 3rd International Conference on Biomedical Engineering and Informatics, (IEEE, Piscataway, 2010), pp. 1599–1602

    Chapter  Google Scholar 

  67. L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. Marche, Y. Roupioz, T. Livache, Spatial resolution in prism-based surface plasmon resonance microscopy. Opt. Express 22(19), 22771–22785 (2014)

    Article  ADS  Google Scholar 

  68. Y. Huang, H. Ho, S. Wu, S. Kong, Detecting phase shifts in surface plasmon resonance: A review. Adv. Opt. Technol. 2012, 471957 (2012)

    Article  Google Scholar 

  69. Y. Zeng, X. Wang, J. Zhou, R. Miyan, J. Qu, H. Ho, K. Zhou, B. Gao, Y. Shao, Phase interrogation SPR sensing based on white light polarized interference for wide dynamic detection range. Opt. Express 28(3), 3442–3450 (2020)

    Article  ADS  Google Scholar 

  70. M. Piliarik, J. Homola, Self-referencing SPR imaging for most demanding high-throughput screening applications. Sensors Actuators B Chem. 134(2), 353–355 (2008)

    Article  Google Scholar 

  71. V. Pruneri, C. Riziotis, P. Smith, A. Vasilakos, Fiber and integrated waveguide-based optical sensors. J. Sensors 2009, 979761 (2009)

    Article  Google Scholar 

  72. J. Homola, M. Piliarik, Surface plasmon resonance (SPR) sensors, in Surface Plasmon Resonance Based Sensors, (Springer, Berlin, 2006), pp. 45–67

    Chapter  Google Scholar 

  73. M. Piliarik, J. Homola, Surface plasmon resonance (SPR) sensors: Approaching their limits? Opt. Express 17(19), 16505–16517 (2009)

    Article  ADS  Google Scholar 

  74. Z. Chen, L. Liu, Y. He, H. Ma, Resolution enhancement of surface plasmon resonance sensors with spectral interrogation: Resonant wavelength considerations. Appl. Opt. 55(4), 884–891 (2016)

    Article  ADS  Google Scholar 

  75. A. Srivastava, Y. Prajapati, Effect of sulfosalt and polymers on performance parameter of SPR biosensor. Opt. Quant. Electron. 52(10), 1–14 (2020)

    Article  Google Scholar 

  76. L. Ma, G. Xia, S. Jin, L. Bai, J. Wang, Q. Chen, X. Cai, Effect of spectral signal-to-noise ratio on resolution enhancement at surface plasmon resonance. Sensors 21(2), 641 (2021)

    Article  ADS  Google Scholar 

  77. J. Homola, Electromagnetic theory of surface plasmons, in Surface Plasmon Resonance Based Sensors, (Springer, Berlin, 2006), pp. 3–44

    Chapter  Google Scholar 

  78. IUPAC, Compendium of Chemical Terminology—The Gold Book (Compiled by A.D. McNaught and A. Wilkinson), 2nd edn. (Blackwell Scientific Publications, Oxford, 1997)

    Google Scholar 

  79. V. Thomsen, D. Schatzlein, D. Mercuro, Limits of detection in spectroscopy. Spectroscopy 18(12), 112–114 (2003)

    Google Scholar 

  80. H. Vaisocherová, K. Mrkvová, M. Piliarik, P. Jinoch, M. Šteinbachová, J. Homola, Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens. Bioelectron. 22(6), 1020–1026 (2007)

    Article  Google Scholar 

  81. C. Geddes, 30 Years of surface plasmon resonance (SPR) for biosensing. Plasmonics 9, 727 (2014)

    Article  Google Scholar 

  82. Y. Liu, Q. Liu, S. Chen, F. Cheng, H. Wang, W. Peng, Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 5(1), 1–9 (2015)

    Google Scholar 

  83. V. Shpacovitch, R. Hergenröder, Surface plasmon resonance (SPR)-based biosensors as instruments with high versatility and sensitivity. Sensors 20(11), 3010 (2020)

    Article  ADS  Google Scholar 

  84. P.R. Sahoo, P. Swain, S.M. Nayak, S. Bag, S.R. Mishra, Surface plasmon resonance-based biosensor: A new platform for rapid diagnosis of livestock diseases. Vet. World 9(12), 1338–1342 (2016)

    Article  Google Scholar 

  85. M. Soler, L. Lechuga, Principles, technologies, and applications of plasmonic biosensors. J. Appl. Phys. 129(11), 111102 (2021)

    Article  ADS  Google Scholar 

  86. L. Castillo-Henríquez, M. Brenes-Acuña, A. Castro-Rojas, R. Cordero-Salmerón, M. Lopretti-Correa, J. Vega-Baudrit, Biosensors for the detection of bacterial and viral clinical pathogens. Sensors 20(23), 6926 (2020)

    Article  ADS  Google Scholar 

  87. P. Singh, Surface plasmon resonance: A boon for viral diagnostics, in Reference Module in Life Sciences, (Elsevier, Amsterdam, 2017)

    Google Scholar 

  88. B. Yakes, E. Papafragkou, S. Conrad, J. Neill, J. Ridpath, W. Burkhardt III, M. Kulka, S. DeGrasse, Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus. Int. J. Food Microbiol. 162(2), 152–158 (2013)

    Article  Google Scholar 

  89. A. Olaru, C. Bala, N. Jaffrezic-Renault, H. Aboul-Enein, Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem. 45(2), 97–105 (2015)

    Article  Google Scholar 

  90. W. Sun, W. Song, X. Guo, Z. Wang, Ultrasensitive detection of nucleic acids and proteins using quartz crystal microbalance and surface plasmon resonance sensors based on target-triggering multiple signal amplification strategy. Anal. Chim. Acta 978, 42–47 (2017)

    Article  Google Scholar 

  91. S. Wang, G.M. Poon, W.D. Wilson, Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods Mol. Biol. 1334, 313–332 (2015)

    Article  Google Scholar 

  92. D. Capelli, C. Parravicini, G. Pochetti, R. Montanari, C. Temporini, M. Rabuffetti, M. Trincavelli, S. Daniele, M. Fumagalli, S. Saporiti, E. Bonfanti, Surface plasmon resonance as a tool for ligand binding investigation of engineered GPR17 receptor, a G protein coupled receptor involved in myelination. Front. Chem. 7, 910 (2020)

    Article  Google Scholar 

  93. B. Guo, W. Cheng, Y. Xu, X. Zhou, X. Li, X. Ding, S. Ding, A simple surface plasmon resonance biosensor for detection of PML/RARα based on heterogeneous fusion gene-triggered nonlinear hybridization chain reaction. Sci. Rep. 7(1), 14037 (2017)

    Article  ADS  Google Scholar 

  94. S. Jena, S. Shrivastava, S. Saxena, N. Kumar, S. Maiti, B. Mishra, R. Singh, Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Sci. Rep. 9, 13485 (2019)

    Article  ADS  Google Scholar 

  95. J. Maynard, N. Lindquist, J. Sutherland, A. Lesuffleur, A. Warrington, M. Rodriguez, S. Oh, Next generation SPR technology of membrane-bound proteins for ligand screening and biomarker discovery. Biotechnol. J. 4(11), 1542 (2009)

    Article  Google Scholar 

  96. A. Šakanovič, V. Hodnik, G. Anderluh, Surface plasmon resonance for measuring interactions of proteins with lipids and lipid membranes, in Lipid-Protein Interactions, (Humana, New York, 2019), pp. 53–70

    Chapter  Google Scholar 

  97. S. Naglot, P. Aggarwal, S. Dey, K. Dalal, Estimation of serum YKL-40 by real-time surface plasmon resonance technology in North-Indian asthma patients. J. Clin. Lab. Anal. 31(2), e22028 (2017)

    Article  Google Scholar 

  98. K. Retra, M. Geitmann, J. Kool, A.B. Smit, I.J.P. de Esch, U.H. Danielson, H. Irth, Development of surface plasmon resonance biosensor assays for primary and secondary screening of acetylcholine binding protein ligands. Anal. Biochem. 407(1), 58–64 (2010)

    Article  Google Scholar 

  99. G. Lautner, Z. Balogh, V. Bardóczy, T. Mészáros, R. Gyurcsányi, Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135(5), 918–926 (2010)

    Article  ADS  Google Scholar 

  100. N. Soh, A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 60(4), 733–745 (2003)

    Article  Google Scholar 

  101. N. Chiu, H. Yang, High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a Carboxyl-MoS2 functional film for SPR-based immunosensors. Front. Bioeng. Biotechnol. 8, 234 (2020)

    Article  Google Scholar 

  102. S. Jia, P. Li, K. Koh, H. Chen, A cytosensor based on NiO nanoparticle-enhanced surface plasmon resonance for detection of the breast cancer cell line MCF-7. Microchim. Acta 183, 683–688 (2016)

    Article  Google Scholar 

  103. K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Cermák, J. Homola, J.E. Dyr, Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes. Anal. Bioanal. Chem. 402(1), 381–387 (2012)

    Article  Google Scholar 

  104. T. Špringer, E. Hemmerová, G. Finocchiaro, Z. Krištofiková, M. Vyhnálek, J. Homola, Surface plasmon resonance biosensor for the detection of tau-amyloid β complex. Sensors Actuators B Chem. 316, 128146 (2020)

    Article  Google Scholar 

  105. S. Bak, G. Kim, H. Jang, J. Kim, J. Lee, C. Kim, Real-time SPR imaging based on a large area beam from a wavelength-swept laser. Opt. Lett. 43(21), 5476–5479 (2018)

    Article  ADS  Google Scholar 

  106. Y. Zeng, L. Wang, S. Wu, J. He, J. Qu, X. Li, H. Ho, D. Gu, B. Gao, Y. Shao, Wavelength-scanning SPR imaging sensors based on an acousto-optic tunable filter and a white light laser. Sensors 17(1), 90 (2017)

    Article  ADS  Google Scholar 

  107. Y. Chang, W. Wang, Y. Hong, R. Yuan, K. Chen, Y. Huang, P. Lu, Y. Chen, Y. Chen, L. Su, S. Wang, Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Anal. Chem. 90(3), 1861–1869 (2018)

    Article  Google Scholar 

  108. L. Shi, Q. Sun, J. He, H. Xu, C. Liu, C. Zhao, Y. Xu, C. Wu, J. Xiang, D. Gu, J. Long, Development of SPR biosensor for simultaneous detection of multiplex respiratory viruses. Biomed. Mater. Eng. 26, S2207–S2216 (2015)

    Google Scholar 

  109. C. Liu, X. Zeng, Z. An, Y. Yang, M. Eisenbaum, X. Gu, J. Jornet, G. Dy, M. Reid, Q. Gan, Y. Wu, Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis. ACS Sensors 3(8), 1471–1479 (2018)

    Article  Google Scholar 

  110. S.-P. Ng, C.-M.L. Wu, S.-Y. Wu, H.-P. Ho, S.K. Kong, Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing. Biosens. Bioelectron. 26(4), 1593–1598 (2010)

    Article  Google Scholar 

  111. C.L. Wong, H.P. Ho, Y.K. Suen, S.K. Kong, Q.L. Chen, W. Yuan, S.Y. Wu, Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosens. Bioelectron. 24(4), 606–612 (2008)

    Article  Google Scholar 

  112. W. Law, P. Markowicz, K. Yong, I. Roy, A. Baev, S. Patskovsky, A. Kabashin, H. Ho, P. Prasad, Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens. Bioelectron. 23(5), 627–632 (2007)

    Article  Google Scholar 

  113. X. Yu, X. Ding, F. Liu, X. Wei, D. Wang, A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection. Meas. Sci. Technol. 19(1), 015301 (2007)

    Article  ADS  Google Scholar 

  114. Y. Sun, H. Cai, X. Qiao, X. Wang, High-performance polarization control modulated surface plasmon resonance sensor based on monolayer graphene/Au-NPs architecture for detection of DNA hybridization. Meas. Sci. Technol. 30(12), 125701 (2019)

    Article  ADS  Google Scholar 

  115. S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, A.V. Kabashin, Phase-sensitive spatially-modulated surface plasmon resonance polarimetry for detection of biomolecular interactions. Sensors Actuators B Chem. 133(2), 628–631 (2008)

    Article  Google Scholar 

  116. C. Wong, J. Chan, L. Choo, H. Lim, H. Mittman, M. Olivo, Plasmonic contrast imaging biosensor for the detection of H3N2 influenza protein-antibody and DNA-DNA molecular binding. IEEE Sensors J. 19(24), 11828–11833 (2019)

    Article  ADS  Google Scholar 

  117. P. Escribá, J. González-Ros, F. Goñi, P. Kinnunen, L. Vigh, L. Sánchez-Magraner, A. Fernández, X. Busquets, I. Horváth, G. Barceló-Coblijn, Membranes: A meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 12(3), 829–875 (2008)

    Article  Google Scholar 

  118. A. Gogoi, S. Konwer, G. Zhuo, Polarimetric measurements of surface chirality based on linear and nonlinear light scattering. Front. Chem. 8, 611833 (2021)

    Article  Google Scholar 

  119. J. Babcock, M. Li, Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins. Acta Pharmacol. Sin. 35(1), 11–23 (2014)

    Article  Google Scholar 

  120. M. Congreve, A. Bortolato, G. Brown, R. Cooke, Modeling and design for membrane protein targets, in Comprehensive Medicinal Chemistry III, (Elsevier, Amsterdam, 2017), pp. 145–188

    Chapter  Google Scholar 

  121. K. Roberts, B. Alberts, A. Johnson, P. Walter, T. Hunt, Molecular Biology of the Cell (Garland Science, New York, 2002)

    Google Scholar 

  122. D. Myszka, R. Rich, SPR’s high impact on drug discovery: Resolution, throughput and versatility. Drug Discov. World Spring 49, 49–55 (2003)

    Google Scholar 

  123. J. Hu, L. Ma, S. Wang, J. Yang, K. Chang, X. Hu, X. Sun, R. Chen, M. Jiang, J. Zhu, Y. Zhao, Biomolecular interaction analysis using an optical surface plasmon resonance biosensor: The Marquardt algorithm vs Newton iteration algorithm. PLoS One 10(7), e0132098 (2015)

    Article  Google Scholar 

  124. C. Chain, M. Daza Millone, J. Cisneros, E.A. Ramirez, M.E. Vela, Surface plasmon resonance as a characterization tool for lipid nanoparticles used in drug delivery. Front. Chem. 8, 605307 (2021)

    Article  Google Scholar 

  125. E. Kabir, S. Uddin, S. Chowdhury, Optimization of surface plasmon resonance biosensor for analysis of lipid molecules, in 2nd International Conference on Advanced Information and Communication Technology (ICAICT), 2020

    Google Scholar 

  126. K. Del Vecchio, R. Stahelin, Using surface plasmon resonance to quantitatively assess lipid–protein interactions, in Lipid Signaling Protocols, (Humana Press, New York, 2016), pp. 141–153

    Chapter  Google Scholar 

  127. V. Hodnik, G. Anderluh, Surface plasmon resonance for measuring interactions of proteins with lipid membranes, in Lipid-Protein Interactions, (Humana Press, Totowa, NJ, 2012), pp. 23–36

    Google Scholar 

  128. D. Drescher, D. Selvakumar, M. Drescher, Analysis of protein interactions by surface plasmon resonance. Adv. Protein Chem. Struct. Biol. 110, 1–30 (2018)

    Article  Google Scholar 

  129. T. Figueira, J. Freire, C. Cunha-Santos, M. Heras, J. Gonçalves, A. Moscona, M. Porotto, A. Veiga, M. Castanho, Quantitative analysis of molecular partition towards lipid membranes using surface plasmon resonance. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  130. Z. Nikolovska-Coleska, Studying protein-protein interactions using surface plasmon resonance, in Protein-Protein Interactions, (Humana Press, New York, 2015), pp. 109–138

    Google Scholar 

  131. A. Shanmugham, H.W.W.F. Sang, Y.J. Bollen, H. Lill, Membrane binding of twin arginine preproteins as an early step in translocation. Biochemistry 45(7), 2243–2249 (2006)

    Article  Google Scholar 

  132. R.V. Stahelin, W. Cho, Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: A surface plasmon resonance study on phospholipases A2. Biochemistry 40(15), 4672–4678 (2001)

    Article  Google Scholar 

  133. A.L. Plant, M. Brigham-Burke, E.C. Petrella, D.J. O’Shannessy, Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal. Biochem. 226(2), 342–348 (1995)

    Article  Google Scholar 

  134. S.F. Sui, Y.T. Sun, L.Z. Mi, Calcium-dependent binding of rabbit C-reactive protein to supported lipid monolayers containing exposed phosphorylcholine group. Biophys. J. 76, 333–341 (1999)

    Article  ADS  Google Scholar 

  135. W. Cho, L. Bittova, R.V. Stahelin, Membrane binding assays for peripheral proteins. Anal. Biochem. 296(2), 153–161 (2001)

    Article  Google Scholar 

  136. M. Brigham-Burke, J.R. Edwards, D.J. O’Shannessy, Detection of receptor-ligand interactions using surface plasmon resonance: Model studies employing the HIV-1 gp120/CD4 interaction. Anal. Biochem. 205(1), 125–131 (1992)

    Article  Google Scholar 

  137. P.N.I.C.-C.M.F.L. Katsamba, K. Thornton, M. Zhu, T. Bos, C. Forte, D. Friend, I. Laird-Offringa, G. Tavares, Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. Anal. Biochem. 352(2), 208–221 (2006)

    Article  Google Scholar 

  138. S. Locatelli-Hoops, N. Remmel, R. Klingenstein, B. Breiden, M. Rossocha, M. Schoeniger, C. Koenigs, W. Saenger, K. Sandhoff, Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes: Patient variant Saposin A lacks lipid extraction capacity. J. Biol. Chem. 281(43), 32451–32460 (2006)

    Article  Google Scholar 

  139. T.T.H. Sugiki, M. Nagasu, K. Hanada, I. Shimada, Real-time assay method of lipid extraction activity. Anal. Biochem. 399(2), 162–167 (2010)

    Article  Google Scholar 

  140. R.A. Currie, K.S. Walker, A. Gray, M. Deak, A. Casamayor, C.P. Downes, P. Cohen, D.R. Alessi, J. Lucocq, Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem. J. 337, 575–583 (1999)

    Article  Google Scholar 

  141. M.P. Besenicar, A. Bavdek, A. Kladnik, P. Macek, G. Anderluh, Kinetics of cholesterol extraction from lipid membranes by methyl-beta-cyclodextrin—a surface plasmon resonance approach. Biochim. Biophys. Acta 1778(1), 175–184 (2008)

    Article  Google Scholar 

  142. A. Bavdek, N.O. Gekara, D. Priselac, I. Gutiérrez Aguirre, A. Darji, T. Chakraborty, P. Macek, J.H. Lakey, S. Weiss, G. Anderluh, Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O. Biochemistry 46(14), 4425–4437 (2007)

    Article  Google Scholar 

  143. M. Besenicar, P. Macek, J.H. Lakey, G. Anderluh, Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids 141(1–2), 169–178 (2006)

    Article  Google Scholar 

  144. SPR Sensor Chips, Cytiva [Online]. Available: https://www.cytivalifesciences.com/en/us/shop/protein-analysis/spr-label-free-analysis/spr-consumables/sensor-chips. Accessed 3-8-2021

  145. D. Drescher, M. Drescher, N. Ramakrishnan, Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia, in Auditory and Vestibular Research, (Humana Press, Totowa, NJ, 2009), pp. 323–343

    Chapter  Google Scholar 

  146. Series S Sensor Chip CM5 [Online]. Available: https://cdn.cytivalifesciences.com/dmm3bwsv3/AssetStream.aspx?mediaformatid=10061&destinationid=10016&assetid=17316. Accessed 3-8-2021

  147. A. Bahloul, V. Michel, J.P. Hardelin, S. Nouaille, S. Hoos, A. Houdusse, P. England, C. Petit, Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum. Mol. Genet. 19(18), 3557–3565 (2010)

    Article  Google Scholar 

  148. N. Wittenberg, H. Im, X. Xu, B. Wootla, J. Watzlawik, A. Warrington, M. Rodriguez, S. Oh, High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. Anal. Chem. 84(14), 6031–6039 (2012)

    Article  Google Scholar 

  149. M. Vala, L. Jordan, A. Warrington, L. Maher III, M. Rodriguez, N. Wittenberg, S. Oh, Surface plasmon resonance sensing on naturally derived membranes: A remyelination-promoting human antibody binds myelin with extraordinary affinity. Anal. Chem. 90(21), 12567–12573 (2018)

    Article  Google Scholar 

  150. P. Morell, R. Quarles, Characteristic composition of myelin, in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, (Lippincott Williams & Wilkins, Philadelphia, 1999), pp. 69–94

    Google Scholar 

  151. Y. Ryu, H. Yun, T. Chung, J. Suh, S. Kim, K. Lee, N. Wittenberg, S. Oh, B. Lee, S. Lee, Kinetics of lipid raft formation at lipid monolayer-bilayer junction probed by surface plasmon resonance. Biosens. Bioelectron. 142, 111568 (2019)

    Article  Google Scholar 

  152. B. Douzi, Protein–protein interactions: Surface plasmon resonance, in Bacterial Protein Secretion Systems, (Humana Press, New York, 2017), pp. 257–275

    Chapter  Google Scholar 

  153. M. Kim, M. Vala, C. Ertsgaard, S. Oh, T. Lodge, F. Bates, B. Hackel, Surface plasmon resonance study of the binding of PEO–PPO–PEO triblock copolymer and PEO homopolymer to supported lipid bilayers. Langmuir 34(23), 6703–6712 (2018)

    Article  Google Scholar 

  154. M. Belkilani, M. Shokouhi, C. Farre, Y. Chevalier, S. Minot, F. Bessueille, A. Abdelghani, N. Jaffrezic-Renault, C. Chaix, Surface plasmon resonance monitoring of mono-rhamnolipid interaction with phospholipid-based liposomes. Langmuir 37(26), 7975–7985 (2021)

    Article  Google Scholar 

  155. E. Fabini, U. Danielson, Monitoring drug–serum protein interactions for early ADME prediction through surface plasmon resonance technology. J. Pharm. Biomed. Anal. 144, 188–194 (2017)

    Article  Google Scholar 

  156. T. Lee, D. Hirst, K. Kulkarni, M. Del Borgo, M. Aguilar, Exploring molecular-biomembrane interactions with surface plasmon resonance and dual polarization interferometry technology: Expanding the spotlight onto biomembrane structure. Chem. Rev. 118(11), 5392–5487 (2018)

    Article  Google Scholar 

  157. S. Sanjay, G. Fu, M. Dou, F. Xu, R. Liu, H. Qi, X. Li, Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 140(21), 7062–7081 (2015)

    Article  ADS  Google Scholar 

  158. A. Miller, Role of early diagnosis and screening; biomarkers. Cancer Detect. Prev. 15(1), 21–26 (1991)

    Google Scholar 

  159. A. Topçu, E. Özgür, F. Yılmaz, N. Bereli, A. Denizli, Real time monitoring and label free creatinine detection with artificial receptors. Mater. Sci. Eng. B 244, 6–11 (2019)

    Article  Google Scholar 

  160. F. Dell’Olio, J. Su, T. Huser, V. Sottile, L. Cortés-Hernández, C. Alix-Panabières, Liquid biopsies: Photonic technologies for liquid biopsies: Recent advances and open research challenges. Laser Photonics Rev. 15, 2170012 (2021)

    Article  ADS  Google Scholar 

  161. V. Jayanthi, A. Das, U. Saxena, Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 91, 15–23 (2017)

    Article  Google Scholar 

  162. N. Bellassai, R. D’Agata, V. Jungbluth, G. Spoto, Surface plasmon resonance for biomarker detection: Advances in non-invasive cancer diagnosis. Front. Chem. 7, 570 (2019)

    Article  ADS  Google Scholar 

  163. L. Mocan, I. Ilie, F.A. Tabaran, B. Dana, F. Zaharie, C. Zdrehus, C. Puia, T. Mocan, V. Muntean, P. Teodora, M. Ofelia, T. Marcel, C. Iancu, Surface plasmon resonance-induced photoactivation of gold nanoparticles as mitochondria-targeted therapeutic agents for pancreatic cancer. Expert Opin. Ther. Targets 17(12), 1383–1393 (2013)

    Article  Google Scholar 

  164. A. Thakur, G. Qiu, S.P. Ng, Y. Lee, Detection of membrane antigens of extracellular vesicles by surface plasmon resonance. J. Lab Precis. Med. 2, 98 (2017)

    Article  Google Scholar 

  165. M. Pal, M. Rashid, M. Bisht, Multiplexed magnetic nanoparticle-antibody conjugates (MNPs-ABS) based prognostic detection of ovarian cancer biomarkers, CA-125, β-2M and ApoA1 using fluorescence spectroscopy with comparison of surface plasmon resonance (SPR) analysis. Biosens. Bioelectron. 73, 146–152 (2015)

    Article  Google Scholar 

  166. T. Chou, C. Chuang, C. Wu, Quantification of Interleukin-6 in cell culture medium using surface plasmon resonance biosensors. Cytokine 51(1), 107–111 (2010)

    Article  Google Scholar 

  167. B. Hosseinkhani, N. van den Akker, J. D’Haen, M. Gagliardi, T. Struys, I. Lambrichts, J. Waltenberger, I. Nelissen, J. Hooyberghs, D. Molin, L. Michiels, Direct detection of nano-scale extracellular vesicles derived from inflammation-triggered endothelial cells using surface plasmon resonance. Nanomed. Nanotechnol. Biol. Med. 16(5), 1663–1671 (2017)

    Article  Google Scholar 

  168. I. Letchumanan, M. Arshad, S. Gopinath, Nanodiagnostic attainments and clinical perspectives on c-reactive protein: Cardiovascular disease risks assessment. Curr. Med. Chem. 28(5), 986–1002 (2021)

    Article  Google Scholar 

  169. Y. Uludag, I.E. Tothill, Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal. Chem. 84(14), 5898–5904 (2012)

    Article  Google Scholar 

  170. J. Johzuka, T. Ona, M. Nomura, One hour in vivo-like phenotypic screening system for anti-cancer drugs using a high precision surface plasmon resonance device. Anal. Sci. 34(10), 1189–1194 (2018)

    Article  Google Scholar 

  171. P. Menon, F. Said, G. Mei, D. Berhanuddin, A. Umar, S. Shaari, B. Majlis, Urea and creatinine detection on nano-laminated gold thin film using Kretschmann-based surface plasmon resonance biosensor. PLoS One 13(7), e0201228 (2018)

    Article  Google Scholar 

  172. C. Pothipor, C. Lertvachirapaiboon, K. Shinbo, K. Kato, K. Ounnunkad, A. Baba, Detection of creatinine using silver nanoparticles on a poly (pyrrole) thin film-based surface plasmon resonance sensor. Jpn. J. Appl. Phys. 59, SCCA02 (2019)

    Article  Google Scholar 

  173. F. Said, P. Menon, M. Nawi, A. Zain, A. Jalar, B. Majlis, Copper-graphene SPR-based biosensor for urea detection, in 2016 IEEE International Conference on Semiconductor Electronics (ICSE), 2016

    Google Scholar 

  174. N. Jamil, P. Menon, G. Mei, S. Shaari, B. Majlis, Urea biosensor utilizing graphene-MoS2 and Kretschmann-based SPR, in TENCON 2017—2017 IEEE Region 10 Conference, Nov 2017

    Google Scholar 

  175. N. Jamil, N. Khairulazdan, P. Menon, A. Zain, A. Hamzah, B. Majlis, Graphene-MoS2 SPR-based biosensor for urea detection, in 2018 International Symposium on Electronics and Smart Devices (ISESD), 2018

    Google Scholar 

  176. P. Menon, B. Mulyanti, N. Jamil, C. Wulandari, H. Nugroho, G. Mei, N. Abidin, L. Hasanah, R. Pawinanto, D. Berhanuddin, Refractive index and sensing of glucose molarities determined using Au-Cr K-SPR at 670/785 nm wavelength. Sains Malaysiana 48(6), 1259–1265 (2019)

    Article  Google Scholar 

  177. B. Mulyanti, C. Wulandari, N. Mohamad, E. Rifaldi, L. Hasanah, P. Menon, Bimetallic Ag/Au thin films in Kretschmann-based surface plasmon resonance sensor for glucose detection. Optoelectron. Adv. Mater. Rapid Commun. 14, 487–493 (2020)

    Google Scholar 

  178. N. Mohamad, M. Wee, M. Mohamed, A. Hamzah, P. Menon, Multi-response optimization of chromium/gold-based nanofilm Kretschmann-based surface plasmon resonance glucose sensor using finite-difference time-domain and Taguchi method. Nanomater. Nanotechnol. 10, 1847980420982119 (2020)

    Article  Google Scholar 

  179. H. Akafzade, N. Hozhabri, S.C. Sharma, Highly sensitive plasmonic sensor fabricated with multilayer Ag/Si3N4/Au nanostructure for the detection of glucose in glucose/water solutions. Sensors Actuators A Phys. 317, 112430 (2020)

    Article  Google Scholar 

  180. A. Omidniaee, S. Karimi, A. Farmani, Surface plasmon resonance-based SiO2 Kretschmann configuration biosensor for the detection of blood glucose. Silicon 10, 1–10 (2021)

    Google Scholar 

  181. D. Kuriakose, Z. Xiao, Pathophysiology and treatment of stroke: Present status and future perspectives. Int. J. Mol. Sci. 21(20), 7609 (2020)

    Article  Google Scholar 

  182. J.M. Wardlaw, V. Murray, E. Berge, G.J. del Zoppo, Thrombolysis for acute ischaemic stroke. Cochrane Database Syst. Rev. 2014(7), CD000213 (2014)

    Google Scholar 

  183. S. Dolati, J. Soleymani, S. Kazem Shakouri, A. Mobed, The trends in nanomaterial-based biosensors for detecting critical biomarkers in stroke. Clin. Chim. Acta 514, 107–121 (2021)

    Article  Google Scholar 

  184. D. Harpaz, B. Koh, R. Seet, I. Abdulhalim, A. Tok, Functionalized silicon dioxide self-referenced plasmonic chip as point-of-care biosensor for stroke biomarkers NT-proBNP and S100β. Talanta 212, 120792 (2021)

    Article  Google Scholar 

  185. S. Vashist, Point-of-care diagnostics: Recent advances and trends. Biosensors 7(4), 62 (2017)

    Article  Google Scholar 

  186. S. Dolati, J. Soleymani, S. Shakouri, A. Mobed, The trends in nanomaterial-based biosensors for detecting critical biomarkers in stroke. Clin. Chim. Acta 514, 107–121 (2021)

    Article  Google Scholar 

  187. C. Huertas, O. Calvo-Lozano, A. Mitchell, L. Lechuga, Advanced evanescent-wave optical biosensors for the detection of nucleic acids: An analytic perspective. Front. Chem. 7, 724 (2019)

    Article  ADS  Google Scholar 

  188. D. Harpaz, B. Koh, R. Marks, R. Seet, I. Abdulhalim, A. Tok, Point-of-Care surface plasmon resonance biosensor for stroke biomarkers NT-proBNP and S100β using a functionalized gold chip with specific antibody. Sensors 19(11), 2533 (2019)

    Article  ADS  Google Scholar 

  189. J. Ryu, H. Joung, M. Kim, C. Park, Surface plasmon resonance analysis of Alzheimer’s β-amyloid aggregation on a solid surface: From monomers to fully-grown fibrils. Anal. Chem. 80(7), 2400–2407 (2008)

    Article  Google Scholar 

  190. A. Rezabakhsh, R. Rahbarghazi, F. Fathi, Surface plasmon resonance biosensors for detection of Alzheimer’s biomarkers; an effective step in early and accurate diagnosis. Biosens. Bioelectron. 167, 112511 (2020)

    Article  Google Scholar 

  191. M. Woolhouse, F. Scott, Z. Hudson, R. Howey, M. Chase-Topping, Human viruses: Discovery and emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367(1604), 2864–2871 (2012)

    Article  Google Scholar 

  192. H. Bai, R. Wang, B. Hargis, H. Lu, Y. Li, A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12(9), 12506–12518 (2012)

    Article  ADS  Google Scholar 

  193. S. Kim, S. Kim, S. Lee, T. Park, K. Byun, S. Kim, M. Shuler, Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor. J. Opt. Soc. Korea 13(3), 392 (2009)

    Article  Google Scholar 

  194. C.E. Nilsson, S. Abbas, M. Bennemo, A. Larsson, M.D. Hämäläinen, A. Frostell-Karlsson, A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine 28(3), 759–766 (2010)

    Article  Google Scholar 

  195. S. Uddin, S. Chowdhury, E. Kabir, Numerical analysis of a highly sensitive surface plasmon resonance sensor for sars-cov-2 detection. Plasmonics 16, 2025–2037 (2021)

    Article  Google Scholar 

  196. N. Omar, Y.W. Fen, J. Abdullah, Y. Mustapha Kamil, W. Daniyal, A.R. Sadrolhosseini, M.A. Mahdi, Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor. Sci. Rep. 10(1), 2374 (2020)

    Article  ADS  Google Scholar 

  197. D. Hu, S. Fry, J. Huang, X. Ding, L. Qiu, Y. Pan, Y. Chen, J. Jin, C. McElnea, J. Buechler, X. Che, Comparison of surface plasmon resonance, resonant waveguide grating biosensing and enzyme linked immunosorbent assay (ELISA) in the evaluation of a dengue virus immunoassay. Biosensors 3(3), 297–311 (2013)

    Article  Google Scholar 

  198. W.R. Wong, O. Krupin, S.D. Sekaran, F.R.M. Adikan, P. Berini, Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides. Anal. Chem. 86, 1735–1743 (2014)

    Article  Google Scholar 

  199. W.R. Wong, S.D. Sekaran, F.R.M. Adikan, P. Berini, Detection of dengue NS1 antigen using long-range surface plasmon waveguides. Biosens. Bioelectron. 78, 132–139 (2016)

    Article  Google Scholar 

  200. P. Jahanshahi, Q. Wei, Z. Jie, M. Ghomeishi, S. Sekaran, F. Mahamd Adikan, Kinetic analysis of IgM monoclonal antibodies for determination of dengue sample concentration using SPR technique. Bioengineered 8(3), 239–247 (2017)

    Article  Google Scholar 

  201. W. Palau, C. Masante, M. Ventura, C. Di Primo, Direct evidence for RNA-RNA interactions at the 3′ end of the Hepatitis C virus genome using surface plasmon resonance. RNA 19(7), 982–991 (2013)

    Article  Google Scholar 

  202. H. Chen, A. Gill, B.K. Dove, S.R. Emmett, C.F. Kemp, M.A. Ritchie, M. Dee, J.A. Hiscox, Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J. Virol. 79(2), 1164–1179 (2005)

    Article  Google Scholar 

  203. J. Shang, G. Ye, K. Shi, Y. Wan, C. Luo, H. Aihara, Q. Geng, A. Auerbach, F. Li, Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020)

    Article  ADS  Google Scholar 

  204. A. Shrivastav, U. Cvelbar, I. Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol. 4(1), 1–12 (2021)

    Article  Google Scholar 

  205. Y. Zeng, J. Fu, X. Yu, Z. Huang, X. Yin, D. Geng, J. Zhang, Should computed tomography (CT) be used as a screening or follow-up tool for asymptomatic patients with SARS-CoV-2 infection? Quant. Imaging Med. Surg. 10(5), 1150 (2020)

    Article  Google Scholar 

  206. G. Seo, G. Lee, M. Kim, S. Baek, M. Choi, K. Ku, C. Lee, S. Jun, D. Park, H. Kim, S. Kim, Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14(4), 5135–5142 (2020)

    Article  Google Scholar 

  207. C. Das, Y. Guo, L. Kang, H. Ho, K. Yong, Investigation of plasmonic detection of human respiratory virus. Adv. Theory Simul. 3(7), 2000074 (2020)

    Article  Google Scholar 

  208. W. Li, M. Moore, N. Vasilieva, J. Sui, S. Wong, M. Berne, M. Somasundaran, J. Sullivan, K. Luzuriaga, T. Greenough, H. Choe, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965), 450–454 (2003)

    Article  ADS  Google Scholar 

  209. F. Li, W. Li, M. Farzan, S.C. Harrison, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005)

    Article  ADS  Google Scholar 

  210. C. Das, Y. Guo, G. Yang, L. Kang, G. Xu, H. Ho, K. Yong, Gold nanorod assisted enhanced plasmonic detection scheme of COVID-19 SARS-CoV-2 spike protein. Adv. Theory Simul. 3(11), 2000185 (2020)

    Article  Google Scholar 

  211. R. Mukhopadhyay, Surface plasmon resonance instruments diversify. Anal. Chem. 77(15), 313A–317A (2005)

    Article  Google Scholar 

Download references

Acknowledgments

AG acknowledges the University Grants Commission (UGC), India (Grant No. F.5-376/2014-15/MRP/NERO/2181), and Assam Science Technology and Environment Council, India (Grant No.: ASTEC/S&T/1614/8/2018-19/1159), for their support to the biophotonics research projects at JBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gazi A. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, N., Chetri, P., Boruah, R., Gogoi, A., Ahmed, G.A. (2022). Surface Plasmon Resonance Biosensors Based on Kretschmann Configuration: Basic Instrumentation and Applications. In: Biswas, R., Mazumder, N. (eds) Recent Advances in Plasmonic Probes. Lecture Notes in Nanoscale Science and Technology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-99491-4_6

Download citation

Publish with us

Policies and ethics