Skip to main content
Log in

Fano Resonances Induced by Strong Interactions Between Dipole and Multipole Plasmons in T-Shaped Nanorod Dimer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A simple T-shaped plasmonic nanostructure composed of two perpendicular coupled nanorods is proposed to produce strong Fano resonances. By the near-field coupling between the “bright” dipole and “dark” quadrupole plasmons of the nanorods, a deep Fano dip is formed in the extinction spectrum, which can be well fitted by the Fano interference model. The effects of the geometry parameters including nanorod length, coupling gap size, and coupling location to the Fano resonances are analyzed in detail, and a very high refractive index sensitivity is achieved by the Fano resonance. Also by adjusting the incident polarization direction, double Fano resonances can be formed by the interferences of the dipole, quadrupole, and hexapole plasmons. The proposed nanorod dimer structure is agile, and a trimer which supports double Fano resonances can be easily formed by introducing a third perpendicular coupled nanorod. The proposed T-shaped nanorod dimer structure may have applications in the fields of biological sensing and plasmon-induced transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 5:899–903

    Article  Google Scholar 

  2. Yanchuk BL, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterialsthe Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  3. Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS. Nano Lett 12:1660–1667

    Article  CAS  Google Scholar 

  4. Liu S, Yang Z, Liu R, Li X (2011) High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity. J Phys Chem C 115:24469–24477

    Article  CAS  Google Scholar 

  5. Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397

    Article  CAS  Google Scholar 

  6. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  7. Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19:5970–5978

    Article  Google Scholar 

  8. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  9. Zhang J, Xiao S, Jeppesen C, Kristensen A, Mortensen NA (2010) Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt Express 18:17187–17192

    Article  CAS  Google Scholar 

  10. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  11. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:47401

    Article  Google Scholar 

  12. Fang Z, Cai J, Yan Z, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475–4479

    Article  CAS  Google Scholar 

  13. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in fano resonances. Nano Lett 10:1694–2701

    Article  Google Scholar 

  14. Shu J, Gao W, Xu Q (2013) Fano resonance in concentric ring apertures. Opt Express 21:11101–11106

    Article  Google Scholar 

  15. Zhang Y, Jia TQ, Zhang HM, Xu ZZ (2012) Fano resonances in disk–ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode. Opt Lett 37:4919–4921

    Article  CAS  Google Scholar 

  16. Niu L, Zhang JB, Fu YH, Kulkarni S, Lukyanchuk B (2011) Fano resonance in dual-disk ring plasmonic nanostructures. Opt Express 19:22974–22981

    Article  Google Scholar 

  17. Habteyes TG, Dhuey S, Cabrini S, Schuck PJ, Leone SR (2011) Theta-shaped plasmonic nanostructures: bringing “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11:1819–1825

    Article  CAS  Google Scholar 

  18. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4:1664–1670

    Article  CAS  Google Scholar 

  19. Aydin K, Pryce IM, Atwater HA (2010) Symmetry breaking and strong coupling in planar optical metamaterials. Opt Express 18:13407–13417

    Article  CAS  Google Scholar 

  20. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652

    Article  CAS  Google Scholar 

  21. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663–1667

    Article  CAS  Google Scholar 

  22. Fu YH, Zhang JB, Yu YF, Yanchuk BL (2012) Generating and manipulating higher order fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137

    Article  CAS  Google Scholar 

  23. Wu D, Jiang S, Liu X (2012) Fano-like resonances in asymmetric homodimer of gold elliptical nanowires. J Phys Chem C 116:13745–13748

    Article  CAS  Google Scholar 

  24. Pena-Rodríguez O, Pal U, Campoy-Quiles M, Rodríguez-Fernandez L, Garriga M, Alonso MI (2011) Enhanced fano resonance in asymmetrical Au:Ag heterodimers. J Phys Chem C 115:6410–6414

    Article  Google Scholar 

  25. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4:819–832

    Article  CAS  Google Scholar 

  26. Shafiei F, Monticone F, Le KQ, Liu X, Hartsfield T, Alu A, Li X (2013) subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnology 8:95–99

    CAS  Google Scholar 

  27. Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2012) Designing and deconstructing the fano lineshape in plasmonic nanoclusters. Nano Lett 12:1058–1062

    Article  CAS  Google Scholar 

  28. Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli KG A, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19:4949–4956

    Article  CAS  Google Scholar 

  29. Yang Z, Zhang Z, Zhang L, Li Q, Hao Z, Wang Q (2011) Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Opt Lett 36:1542–1544

    Article  Google Scholar 

  30. Yang Z, Zhang Z, Hao Z, Wang Q (2011) Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter. Appl Phys Lett 99:81107

    Article  Google Scholar 

  31. Wang J, Fan C, He J, Ding P, Liang E, Xue Q (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21:2236–2244

    Article  Google Scholar 

  32. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant No.60907025, No.11374048 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui Yiping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binfeng, Y., Guohua, H., Jiawei, C. et al. Fano Resonances Induced by Strong Interactions Between Dipole and Multipole Plasmons in T-Shaped Nanorod Dimer. Plasmonics 9, 691–698 (2014). https://doi.org/10.1007/s11468-014-9688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9688-1

Keywords

Navigation