Skip to main content
Log in

Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting

  • Published:
Plasmonics Aims and scope Submit manuscript

An Erratum to this article was published on 27 May 2014

Abstract

Plasmonic nanostructures exhibit a variety of surface plasmon polariton (SPP) modes, with different characteristic properties. While a single metal dielectric interface supports a single-interface SPP mode, a thin metal film can support extended long range SPPs and strongly confined short range SPPs. When the coupling between the incident light and the SPP is provided through a diffraction grating, it is possible to azimuthally rotate the grating with respect to the scattering plane, introducing the possibility to propagate the SPP along an arbitrary direction. We present a theoretical and experimental analysis of the coupling conditions for long range and short range SPPs under this configuration. We also investigate the propagation length of the modes depending on the propagation direction with respect to the grating grooves, showing in particular that the long range SPP propagation length can be sensibly enhanced with respect to the null-azimuth case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  2. Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc Phys Soc Lond 18:269

    Article  Google Scholar 

  3. Cowan JJ, Arakawa ET (1970) Dispersion of surface plasmons in dielectric-metal coatings on concave diffraction gratings. Z Phys 235(2):97

    Article  CAS  Google Scholar 

  4. Ibach H and Lüth H (2009) Solid-State Physics. Springer

  5. Yang FZ, Sambles JR, Bradberry GW (1991) Long-range surface modes supported by thin films. Phys Rev B 44(11):5855–5872

    Article  Google Scholar 

  6. Rashid Z, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21(12):2442–2446

    Article  Google Scholar 

  7. Maier SA (2007) Plasmonics: fundamentals and applications, Springer

  8. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33(8):5186–55201

    Article  CAS  Google Scholar 

  9. Bryan-Brown GP, Sambles JR, Hutley MC (1990) Polarization conversion through the excitation of surface plasmons on a metallic grating. J Mod Opt 37:1227–1232

    Article  CAS  Google Scholar 

  10. Veith M, Muller KG, Mittler-Neher S, Knoll W (1995) Propagation and deflection of guided modes in planar waveguides via grating rotation. Appl Phys B 60:1–4

    Article  Google Scholar 

  11. Romanato F, Hong LK, Kang HK, Wong CC, Yun Z, Knoll W (2008) Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons. Phys Rev B 77:245435

    Article  Google Scholar 

  12. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B 121(1):158–177

    Article  CAS  Google Scholar 

  13. Habauzit D, Chopineau J, Roig B (2007) SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal Bioanal Chem 387(4):1215–1223

    Article  CAS  Google Scholar 

  14. Nenninger GG, Tobiška P, Homola J, Yee SS (2001) Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sensors Actuators B 74(1–3):145–151

    Article  CAS  Google Scholar 

  15. Berini P, Charbonneau R, Lahoud N (2007) Long-range surface plasmons on ultrathin membranes. Nano Lett 7(5):1376–1380

    Article  CAS  Google Scholar 

  16. Krupin O, Asiri H, Wang C, Tait RN, Berini P (2013) Biosensing using straight long-range surface plasmon waveguides. Opt Express 21(1):698–709

    Article  CAS  Google Scholar 

  17. Vala M, Robelek R, Bocková M, Wegener J, Homola J (2013) Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons. Biosens Bioelectron 240(1):417–421

    Article  Google Scholar 

  18. Shi H, Liu Z, Wang X, Guo J, Liu L, Luo L, Guo J, Ma H, Sun S, He Y (2013) A symmetrical optical waveguide based surface plasmon resonance biosensing system. Sens. Actuators B 185:91–96

    Article  CAS  Google Scholar 

  19. Romanato F, Lee KH, Kang HK, Ruffato G, Wong CC (2009) Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control. Opt Express 17:12145–12154

    Article  CAS  Google Scholar 

  20. Sonato A, Ruffato G, Zacco G, Silvestri D, Natali M, Carli M, Giallongo G, Granozzi G, Morpurgo M, Romanato F (2013) Enhanced sensitivity azimuthally controlled grating-coupled surface plasmon resonance applied to the calibration of thiol-poly(ethylene oxide) grafting Sens. Actuators B Chem 181:559–566

    Article  CAS  Google Scholar 

  21. Ruffato G, Romanato F (2012) Grating-coupled surface plasmon resonance in the conical mounting with polarization modulation. Opt Lett 37:2718–2720

    Article  CAS  Google Scholar 

  22. Ruffato G, Pasqualotto E, Sonato A, Zacco G, SIlvestri D, Morpurgo M, De Toni A, Romanato F (2013) Implementation and testing of a compact and high-resolution sensing device based on grating-coupled surface plasmon resonance with polarization modulation. Sensors Actuators B 185:179–187

    Article  CAS  Google Scholar 

  23. Zacco G, Romanato F, Sonato A, Sammito D, Ruffato G, Morpurgo M, Silvestri D, Carli M, Schiavuta P, Brusatin G (2011) Sinusoidal plasmonic crystals for bio-detection sensors. Microelectron Eng 88:1898–1901

    Article  CAS  Google Scholar 

  24. Antonello A, Jia B, He Z, Buso D, Perotto G, Brigo L, Brusatin G, Guglielmi M, Gu M, Martucci A (2012) Optimized electroless silver coating for optical and plasmonic applications. Plasmonics 7(4):633–639

    Article  CAS  Google Scholar 

  25. Loy DA, Shea KJ (1995) Bridged polysilsesquioxanes. Highly porous hybrid organic–inorganic materials. Chem Rev 95(5):1431–1442

    Article  CAS  Google Scholar 

  26. Brigo L, Grenci G, Carpentiero A, Pistore A, Tormen M, Guglielmi M, Brusatin G (2011) Positive resist for UV and X-ray lithography synthesized through sol–gel chemistry. J Sol–gel Sci Technol 60(3):400–407

    Article  CAS  Google Scholar 

  27. Ong BH, Yuan X, Tjin SC (2007) Bimetallic silver–gold film waveguide surface plasmon resonance sensor. Fiber Integr Opt 26(4):229–240

    Article  CAS  Google Scholar 

  28. Fujiwara H (2007) Spectroscopic Ellipsometry. Wiley

  29. Romanato F, Lee KH, Ruffato G, Wong CC (2010) The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting. Appl Phys Lett 96(11):111103

    Article  Google Scholar 

  30. Bozhevolnyi SI, Søndergaard T (2007) General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt Express 15:10869

    Article  CAS  Google Scholar 

  31. Parisi G, Zilio P, Romanato F (2012) Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method. Opt Express 20:16690

    Article  Google Scholar 

  32. Davanco M, Urzhumov Y, Shvets G (2007) The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction. Opt Express 15:9681–9691

    Article  Google Scholar 

  33. Fietz C, Urzhumov Y, Shvets G (2011) Complex k band diagrams of 3D metamaterial/photonic crystals. Opt Express 19:19027–19041

    Article  CAS  Google Scholar 

  34. Brigo L, Gazzola E, Cittadini M, Zilio P, Zacco G, Romanato F, Martucci A, Guglielmi M, Brusatin G (2013) Short and long range surface plasmon polariton waveguides for xylene sensing. Nanotechnology 24:155502

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Padova through the PLATFORMS strategic project “Plasmonic nano-textured materials and architectures for enhanced molecular sensing” STPD089KSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gazzola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazzola, E., Brigo, L., Zacco, G. et al. Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting. Plasmonics 9, 867–876 (2014). https://doi.org/10.1007/s11468-013-9624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9624-9

Keywords

Navigation