Skip to main content
Log in

Obtain Quadruple Intense Plasmonic Resonances from Multilayered Gold Nanoshells by Silver Coating: Application in Multiplex Sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Four intense and separate localized surface plasmon resonance (LSPR) absorption peaks have been obtained in the gold-dielectric–gold–silver multilayer nanoshells. The silver coating on the gold shell results in a new LSPR peak at about 400 nm corresponding to the \( {{\left| {\omega_{+}^{-}} \right\rangle}_{Ag }} \) mode. The intense local electric field concentrated in the silver shell at the wavelength of 400 nm indicates that this new plasmonic band is coming from the symmetric coupling between the antibonding silver shell plasmon mode and the inner sphere plasmon. Increasing the silver shell thickness also leads to the intensity increasing of the \( {{\left| {\omega_{+}^{-}} \right\rangle}_{Au }} \) mode and blue shift of \( \left| {\omega_{-}^{+}} \right\rangle \) and \( \left| {\omega_{-}^{-}} \right\rangle \) modes. Therefore, quadruple intense plasmonic resonances in the visible region could be achieved in gold-dielectric–gold–silver multilayer nanoshells by tuning the geometrical parameters. And the quadruple intense plasmonic resonances in the visible region provide well potential for multiplex biosensing based on LSPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Joshi GK, McClory PJ, Dolai S, Sardar R (2012) Improved localized surface plasmon resonance biosensing sensitivity based on chemically-synthesized gold nanoprisms as plasmonic transducers. J Mater Chem 22:923–931

    Article  CAS  Google Scholar 

  2. Zeng SW, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506

    Article  CAS  Google Scholar 

  3. Zhang J, Malicka J, Gryczynski I, Lakowicz JR (2005) Surface-enhanced fluorescence of Fluorescein-labeled oligonucleotides capped on silver nanoparticles. J Phys Chem B 109:7643

    Article  CAS  Google Scholar 

  4. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  5. Yi MF, Zhang DG, Wen XL, Fu Q, Wang P, Lu YH, Ming H (2011) Fluorescence enhancement caused by plasmonics coupling between silver nanocubes and silver film. Plasmonics 6:213–217

    Article  CAS  Google Scholar 

  6. Zhu J, Zhu K, Huang LQ (2008) Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B. Phys Lett A 372:3283–3288

    Article  CAS  Google Scholar 

  7. Jaiswal A, Sanpui P, Chattopadhyay A, Ghosh SS (2011) Investigating fluorescence quenching of ZnS quantum dots by silver nanoparticles. Plasmonics 6:125–132

    Article  CAS  Google Scholar 

  8. Shuford KL, Ratner MA, Schatz GC (2005) Multipolar excitation in triangular nanoprisms. J Chem Phys 123:114713

    Article  Google Scholar 

  9. Charles DE, Gara M, Aherne D, Ledwith DM, Kelly JM, Blau WJ, Brennan-Fournet ME (2011) Scaling of surface plasmon resonances in triangular silver nanoplate sols for enhanced refractive index sensing. Plasmonics 6:351–362

    Article  CAS  Google Scholar 

  10. Chen S, Carroll DL (2002) Synthesis and characterization of truncated triangular sliver Nanoplates. Nano Lett 2:1003–1007

    Article  CAS  Google Scholar 

  11. Yu C, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79:572–579

    Article  CAS  Google Scholar 

  12. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: A simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  13. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16:19579–19591

    Article  CAS  Google Scholar 

  14. Wu DJ, Liu XJ (2009) Tunable near-infrared optical properties of three-layered gold–silica–gold nanoparticles. Appl Phys B 97:193–197

    Article  CAS  Google Scholar 

  15. Chakravadhanula VSK, Elbahri M, Schürmann U, Takele H, Greve H, Zaporojtchenko V, Faupel F (2008) Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry. Nanotechnology 19:225302

    Article  CAS  Google Scholar 

  16. Wu DJ, Liu XJ (2010) Optimization of silica–silver–gold layered nanoshell for large near-field enhancement. Appl Phys Lett 96:151912

    Article  Google Scholar 

  17. Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au–Ag Core–Shell structure nanowires. Nanoscale Res Lett 4:977–981

    Article  CAS  Google Scholar 

  18. Wu DJ, Xu XD, Liu XJ (2008) Electric field enhancement in bimetallic gold and silver nanoshells. Solid State Commun 148:163–167

    Article  CAS  Google Scholar 

  19. Peña-Rodríguez O, Pal U (2011) Enhanced plasmonic behavior of bimetallic (Ag–Au) multilayered spheres. Nanoscale Res Lett 6:279

    Article  Google Scholar 

  20. Zhu J, Li JJ, Yuan L, Zhao JW (2012) Optimization of three-layered Au−Ag bimetallic nanoshells for triple-bands surface plasmon resonance. J Phys Chem C 116:11734–11740

    Article  CAS  Google Scholar 

  21. Zhu J, Li JJ, Zhao JW (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534

    Article  CAS  Google Scholar 

  22. Khosravi H, Daneshfar N, Bahari A (2010) Theoretical study of the light scattering from two alternating concentric double silica-gold nanoshell. Phys Plasmas 17:053302

    Article  Google Scholar 

  23. Zhu J, Ren YJ, Zhao SM (2012) Refractive index sensitivity of gold double concentric nanoshells: Tuning the intensity discrepancy of two-band plasmonic absorption. Sensor Actuat B-Chem 16:1129–1134

    Article  Google Scholar 

  24. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78:173

    Article  CAS  Google Scholar 

  25. Liu Z, Luo L, Dong YH, Weng GJ, Li JJ (2011) Resonance scattering amplification assay of biomolecules based on the biomineralization of gold nanoparticles bioconjugates. J Colloid Interf Sci 363:182–186

    Article  CAS  Google Scholar 

  26. Gao F, Ye QQ, Cui P, Chen XX, Li MG, Wang L (2011) Selective “turn-on” fluorescent sensing for biothiols based on fluorescence resonance energy transfer between acridine orange and gold nanoparticles. Anal Methods 3:1180–1185

    Article  CAS  Google Scholar 

  27. Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y (2012) A SERS-based immunoassay with highly increased sensitivity using gold/silver core–shell nanorods. Biosens Bioelectron 38:94–99

    Article  CAS  Google Scholar 

  28. Witlicki EH, Andersen SS, Hansen SW, Jeppesen JO, Wong EW, Jensen L, Flood AH (2010) Turning on resonant SERRS using the chromophore–plasmon coupling created by host–guest complexation at a plasmonic nanoarray. J Am Chem Soc 132:6099–6107

    Article  CAS  Google Scholar 

  29. Chowdhury S, Wu Z, Jaquins-Gerstl A, Liu S, Dembska A, Armitage BA, Jin R, Peteanu LA (2011) Wavelength dependence of the fluorescence quenching efficiency of nearby dyes by gold nanoclusters and nanoparticles: the roles of spectral overlap and particle size. J Phys Chem C 115:20105–20112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University, the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China under grant no. 11174232, 61178075, and 81101122.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Jun-wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Li, Jj. & Zhao, Jw. Obtain Quadruple Intense Plasmonic Resonances from Multilayered Gold Nanoshells by Silver Coating: Application in Multiplex Sensing. Plasmonics 8, 1493–1499 (2013). https://doi.org/10.1007/s11468-013-9563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9563-5

Keywords

Navigation