Skip to main content
Log in

Exploration of LSPR-based Refractive Index Sensor Coated with Silver-MgF2 Layer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A refractive index (RI) sensor has been demonstrated and numerically analyzed by the finite element method (FEM) to gain supreme sensitivity on the basis of localized surface plasmon resonance (LSPR). Plasmonic material, such as silver, has been used as a coating layer outside of the dielectric core. Various structural parameters have been analyzed for the proposed sensors, which have a significant influence on the sensing field. To make the sensing strength much stronger, a thin MgF2 layer has been added to the silver layer. The wavelength and amplitude interrogation method achieves extremely high wavelength sensitivity (WS) responses of 948.67 μm/RIU and amplitude sensitivity (AS) responses of − 1602.82 RIU−1 in the analyte RI range of 1.35 to 1.38. The operating wavelength range of 5.5–7.5 μm shows efficient results in this structure. The proposed sensor is used for identifying analytes in the biological and biochemical fields and is also applicable in bio-photonics. Owing to its low confinement losses and simply designed structure, the proposed RI sensor will be extensively appropriate for bio-sensing because of its outstanding sensitivity response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Corresponding author on reasonable request.

Code Availability

Not Applicable.

References

  1. Manzano M, Vizzini P, Jia K, Adam PM, Ionescu RE (2016) Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine. Sens Actuators B Chem 223:295–330

    Article  CAS  Google Scholar 

  2. Berger CE, Greve J (2000) Differential SPR immunosensing. Sens Actuators B Chem 63(1–2):103–108

    Article  CAS  Google Scholar 

  3. Rakhshani MR (2020) Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics Nanostructures-Fundam Appl 39:100768

  4. Fang S, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046

    Article  CAS  Google Scholar 

  5. Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H, Abbott D (2017) Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens J 18(1):133–140

    Article  Google Scholar 

  6. Azab MY, Hameed MFO, Obayya SSA (2017) Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers. Opt Quant Electron 49(2):49

    Article  Google Scholar 

  7. Nooke A, Beck U, Hertwig A, Krause A, Krüger H, Lohse V, Negendank D, Steinbach J (2010) On the application of gold based SPR sensors for the detection of hazardous gases. Sens Actuators, B Chem 149(1):194–198

    Article  CAS  Google Scholar 

  8. Atar N, Eren T, Yola ML (2015) A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chem 184:7–11

    Article  CAS  Google Scholar 

  9. Stemmler I, Brecht A, Gauglitz G (1999) Compact surface plasmon resonance-transducers with spectral readout for biosensing applications. Sens Actuators B Chem 54(1–2):98–105

    Article  CAS  Google Scholar 

  10. Weng S, Pei L, Wang J, Ning T, Li J (2017) High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photon Res 5(2):103–107

    Article  CAS  Google Scholar 

  11. Rashid KS, Hassan MF, Yaseer AA, Tathfif I, Sagor RH (2021) Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sens Res 33

    Article  Google Scholar 

  12. Niggemann M, Katerkamp A, Pellmann M, Bolsmann P, Reinbold J, Cammann K (1996) Remote sensing of tetrachloroethene with a micro-fibre optical gas sensor based on surface plasmon resonance spectroscopy. Sens Actuators B Chem 34(1–3):328–333

    Article  CAS  Google Scholar 

  13. Paul D, Dutta S, Saha D, Biswas R (2017) LSPR based Ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing. Sens Actuators B Chem 250:198–207

    Article  CAS  Google Scholar 

  14. Akimoto T, Sasaki S, Ikebukuro K, Karube I (1999) Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy. Appl Opt 38(19):4058–4064

    Article  CAS  Google Scholar 

  15. Sakib MN, Hossain MB, Al-tabatabaie KF, Mehedi IM, Hasan MT, Hossain MA, Amiri IS (2019) High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Results in Physics 15

    Article  Google Scholar 

  16. Parapari ES, Koozehkanani ZD, Toofan S (2021) A 10-GHz inductorless modified regulated cascode transimpedance amplifier for optical fiber communication. Microelectron J 114

    Article  Google Scholar 

  17. Lu M, Zhu H, Hong L, Zhao J, Masson JF, Peng W (2020) Wavelength-tunable optical fiber localized surface plasmon resonance biosensor via a Diblock copolymer-templated nanorod monolayer. ACS Appl Mater Interfaces 12(45):50929–50940

    Article  CAS  Google Scholar 

  18. Tathfif I, Hassan MF, Rashid KS, Yaseer AA, Sagor RH (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519

    Article  CAS  Google Scholar 

  19. Tathfif I, Rashid KS, Yaseer AA, Sagor RH (2021) Alternative material titanium nitride based refractive index sensor embedded with defects: an emerging solution in sensing arena. Results Phys 29

    Article  Google Scholar 

  20. Rashid KS, Tathfif I, Yaseer AA, Hassan MF, Sagor RH (2021) Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Express 29(23):37541–37554

    Article  CAS  Google Scholar 

  21. Pathak AK, Ghosh S, Gangwar RK, Rahman BMA, Singh VK (2019) Metal nanowire assisted hollow core fiber sensor for an efficient detection of small refractive index change of measurand liquid. Plasmonics 14(6):1823–1830

    Article  CAS  Google Scholar 

  22. Zhou H, Kim HK, Shi FG, Zhao B, Yota J (2002) Optical properties of PECVD dielectric thin films: thickness and deposition method dependence. Microelectron J 33(11):999–1004

    Article  CAS  Google Scholar 

  23. Vasconcelos MSD, Mauriz PW, Albuquerque EL (2009) Optical filters based in quasiperiodic photonic crystal. Microelectron J 40(4–5):851–853

    Article  CAS  Google Scholar 

  24. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874

    Article  CAS  Google Scholar 

  25. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch a 23(12):2135–2136

    Article  CAS  Google Scholar 

  26. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei 216(4):398–410

    Article  CAS  Google Scholar 

  27. Islam MR, Jamil MA, Zaman MSU, Ahsan SAH, Pulak MK, Mehjabin F, Khan MMI, Chowdhury JA, Islam M (2020) Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss. Optik 221

    Article  CAS  Google Scholar 

  28. Jorgenson RC Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sens Actuators B Chem 12(3):213–220

  29. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10(5):1123–1131

    Article  CAS  Google Scholar 

  30. Sharmin S, Bosu A, Akter S (2018) A Simple Gold-Coated Photonic Crystal Fiber Based Plasmonic Biosensor. In 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), pp 1–4

  31. Yang X, Lu Y, Liu B, Yao J (2017) Simulation of LSPR sensor based on exposed-core grapefruit fiber with a silver nanoshell. J Lightwave Technol 35(21):4728–4733

    Article  CAS  Google Scholar 

  32. Saker K, Bouchemat T, Lahoubi M, Bouchemat M, Pu S (2020) Design of non-reciprocal device based on magnetic photonic crystal fiber with enhanced birefringence. Microelectron J 100

    Article  CAS  Google Scholar 

  33. El Hamzaoui H, Ouerdane Y, Bigot L, Bouwmans G, Capoen B, Boukenter A, Girard S, Bouazaoui M (2012) Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt Express 20(28):29751–29760

    Article  Google Scholar 

  34. Amouzad Mahdiraji G, Chow DM, Sandoghchi SR, Amirkhan F, Dermosesian E, Yeo KS, Kakaei Z, Ghomeishi M, Poh SY, Yu Gang S, Mahamd Adikan FR (2014) Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber Integr Opt 33(1–2):85–104

    Article  CAS  Google Scholar 

  35. Islam MR, Khan MMI, Mehjabin F, Chowdhury JA, Islam M (2020) Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys 19

    Article  Google Scholar 

  36. Cennamo N, Massarotti D, Conte L, Zeni L (2011) Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 11(12):11752–11760

    Article  Google Scholar 

  37. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410

    Article  CAS  Google Scholar 

  38. Tathfif I, Yaseer AA, Rashid KS, Sagor RH (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29(20):32365–32376

    Article  CAS  Google Scholar 

  39. Dodge MJ (1984) Refractive properties of magnesium fluoride. Appl Opt 23(12):1980–1985

    Article  CAS  Google Scholar 

  40. Luan N, Wang R, Lv W, Yao J (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23(7):8576–8582

    Article  CAS  Google Scholar 

  41. Khan MS, Ahmed K, Hossain MN, Paul BK, Nguyen TK, Dhasarathan V (2020) Exploring refractive index sensor using gold coated D-shaped photonic crystal fiber for biosensing applications. Optik 202

    Article  CAS  Google Scholar 

  42. Gauvreau B, Hassani A, Fehri MF, Kabashin A, Skorobogatiy M (2007) Photonic bandgap fiber-based surface plasmon resonance sensors. Opt Express 15(18):11413–11426

    Article  CAS  Google Scholar 

  43. Dash JN, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol Lett 26(11):1092–1095

    Article  CAS  Google Scholar 

  44. Rifat AA, Ahmed R, Mahdiraji GA, Adikan FM (2017) Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens J 17(9):2776–2783

    Article  CAS  Google Scholar 

  45. Revathi AA, Rajeswari D (2020) Surface plasmon resonance biosensor-based dual-core photonic crystal fiber: design and analysis. J Opt 49:163–167

    Article  Google Scholar 

  46. Chakma S, Khalek MA, Paul BK, Ahmed K, Hasan MR, Bahar AN (2018) Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens Bio-sens Res 18:7–12

    Article  Google Scholar 

  47. Dash JN, Jha R (2014) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol Lett 26(6):595–598

    Article  CAS  Google Scholar 

  48. Hasan M, Akter S, Rifat AA, Rana S, Ali S (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4(1):18

  49. Liu C, Wang J, Wang F, Su W, Yang L, Lv J, Fu G, Li X, Liu Q, Sun T, Chu PK (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt Commun 464

    Article  CAS  Google Scholar 

  50. Paul AK, Habib MS, Hai NH, Razzak SA (2020) An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing. Opt Commun 464

    Article  CAS  Google Scholar 

  51. Liu C, Yang L, Lu X, Liu Q, Wang F, Lv J, Sun T, Mu H, Chu PK (2017) Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt Express 25(13):14227–14237

    Article  CAS  Google Scholar 

  52. Rifat AA, Mahdiraji GA, Sua YM, Ahmed R, Shee YG, Adikan FM (2016) Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt Express 24(3):2485–2495

    Article  CAS  Google Scholar 

  53. Hossen MN, Ferdous M, Khalek MA, Chakma S, Paul BK, Ahmed K (2018) Design and analysis of biosensor based on surface plasmon resonance. Sens Bio-sens Res 21:1–6

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number: IFP22UQU4170008DSR03.

Funding

The Grant Code is IFP22UQU4170008DSR03.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: K. Ahmed. Data curation, formal analysis, investigation, methodology: N. Basak, N. Sultana, S.A. Mitu. Funding acquisition, F.A. Al-Zahrani. Project administration: K. Ahmed. Resources, software: N. Basak, N. Sultana, S.A. Mitu, R.V. Kumar, S.K. Patel. Supervision: K. Ahmed. Validation: K. Ahmed. Visualization: N. Basak, N. Sultana, S.A. Mitu. Writing-original draft: N. Basak, N. Sultana, S.A. Mitu, K. Ahmed, F.A. Al-Zahrani. Writing-review editing: N. Basak, N. Sultana, S.A. Mitu, K. Ahmed, F.A. Al-Zahrani, R.V. Kumar, S.K. Patel.

Corresponding author

Correspondence to Kawsar Ahmed.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, N., Sultana, N., Mitu, S.A. et al. Exploration of LSPR-based Refractive Index Sensor Coated with Silver-MgF2 Layer. Plasmonics 18, 271–282 (2023). https://doi.org/10.1007/s11468-022-01767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01767-9

Keywords

Navigation