Skip to main content
Log in

Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrated numerically that light can be totally absorbed by an ultrathin metamaterial film through coherently induced plasmon hybridization. Two fundamental modes, namely symmetrical and antisymmetrical modes, are observed in the metal–insulator–metal structure and attributed to the electric and magnetic resonance, respectively. Each kind of resonance is related to a distinct absorption peak for the corresponding coherent inputs. In particular, it is found that the antisymmetrical absorption is almost omnidirectional and suitable for divergent beams with arbitrary polarization and angle of incidence. To interpret the interaction of magnetic and electric fields with the structure, effective material parameters of the metamaterial are also retrieved, showing good agreement with the intuitive discussion. Furthermore, the general condition of coherent perfect absorption in a metamaterial thin film is given, which could be helpful for the design and understanding of such absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402

    Article  CAS  Google Scholar 

  2. Teperik TV, García de Abajo FJ, Borisov AG, Abdelsalam M, Bartlett PN, Sugawara Y, Baumberg JJ (2008) Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics 2(5):299–301

    Article  CAS  Google Scholar 

  3. Chihhui Wu, Yoav A, Gennady S (2008) Ultra-thin wide-angle perfect absorber for infrared frequencies. Proc SPIE 7029:70290W

    Google Scholar 

  4. Truong VV, de Dormale B (2011) Optical absorption in overcoats of nanoparticle arrays on a metallic substrate. Plasmonics 6:195–200

    Article  CAS  Google Scholar 

  5. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  Google Scholar 

  6. Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X (2011) Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt Express 19(18):17413–17420

    Article  CAS  Google Scholar 

  7. Chong YD, Ge L, Cao H, Stone AD (2010) Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett 105(5):053901

    Article  CAS  Google Scholar 

  8. Wan W, Chong Y, Ge L, Noh H, Stone AD, Cao H (2011) Time-reversed lasing and interferometric control of absorption. Science 331(6019):889–892

    Article  CAS  Google Scholar 

  9. Chong YD, Stone AD (2011) Hidden black: coherent enhancement of absorption in strongly scattering media. Phys Rev Lett 107(16):163901

    Article  CAS  Google Scholar 

  10. Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X (2012) Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express 20(3):2246–2254

    Article  CAS  Google Scholar 

  11. Klimov V, Sun S, Guo GU (2012) Coherent perfect nanoabsorbers based on negative refraction. arXiv: 1202.1749v1 (in press)

  12. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966

    Article  CAS  Google Scholar 

  13. Zhou J, Koschny T, Zhang L, Tuttle G, Soukoulis CM (2006) Experimental demonstration of negative index of refraction. Appl Phys Lett 88:221103

    Article  Google Scholar 

  14. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

    Article  CAS  Google Scholar 

  15. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(19):419–422

    Article  CAS  Google Scholar 

  16. Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H (2007) Plasmon hybridization in stacked cut-wire metamaterials. Adv Mater 19:3628–3632

    Article  CAS  Google Scholar 

  17. Maaroof AI, Nygaard JV, Sutherland DS (2011) Plasmon hybridization in silver nanoislands as semishells arrays coupled to a thin metallic film. Plasmonics 6:419–425

    Article  CAS  Google Scholar 

  18. Oh C, Escuti MJ (2006) Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation. Opt Express 14:11870–11884

    Article  Google Scholar 

  19. Palik E, Ghosh G (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  20. Chen X, Grzegorczyk TM, Wu BI, Pacheco J, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phy Rev E 70:016608

    Article  Google Scholar 

  21. Koschny T, Markos P, Smith DR, Soukoulis CM (2003) Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phy Rev E 68:065602(R)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program of China (no. 2011CB301800) and the Chinese Nature Science Grant (60825405, 61138002, and 61177013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo.

Additional information

Mingbo Pu and Qin Feng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, M., Feng, Q., Hu, C. et al. Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film. Plasmonics 7, 733–738 (2012). https://doi.org/10.1007/s11468-012-9365-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9365-1

Keywords

Navigation