Skip to main content
Log in

Plasmon Hybridization in Silver Nanoislands as Semishells Arrays Coupled to a Thin Metallic Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We obtained experimentally strong plasmon interactions between localized surface plasmon with delocalized surface plasmon polaritons in a new nanosystem of silver semishells island film arrays arranged as a closed-packing structure coupled to an adjacent thin silver film. We show that plasmon interactions for such a nanosystem exhibits two pronounced resonances and interpret the coupling in terms of Fano resonances. The higher energy resonance is identified as a symmetric hybridization mode between localized plasmon resonances in the island semishell array and surface plasmon polaritons in the metal film and while the lower energy resonance is identified as a corresponding anti-symmetric hybridization mode. Increasing the size of the particle arrays enhances and red shifts the resonances. We show that adding a dielectric spacer between the semishell island array and the metal film results in a red shifting of the resonances and introduce an additional high energy spectral peak. The effect of the spacer layer is interpreted as a reduced hybridization and the generation of additional localized surface plasmon resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andrew Murray W, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771

    Article  Google Scholar 

  2. Zayatsa AV, Smolyaninovb II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  Google Scholar 

  3. Stockman MI, Faleev SV, Bergman DJ (2001) Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Phys Rev Lett 87:167401

    Article  CAS  Google Scholar 

  4. Seal K, Genov DA, Sarychev AK, Noh H, Shalaev VM, Ying ZC, Zhang X, Cao H (2006) Coexistence of localized and delocalized surface plasmon modes in percolating metal films. Phys Rev Lett 97:206103

    Article  CAS  Google Scholar 

  5. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494

    Article  CAS  Google Scholar 

  6. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442

    Article  CAS  Google Scholar 

  7. Toftegaard R, Arnbjerg J, Daasbjerg K, Ogilby P, Dmitriev A, Sutherland DS, Poulsen L (2008) Metal-enhanced 1270 nm singlet oxygen phosphorescence. Angew Chem Int Ed 47:6025

    Article  CAS  Google Scholar 

  8. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867

    Article  CAS  Google Scholar 

  9. Li T, Li J, Wang F, Wang Q, Liu H, Zhu S, Zhu Y (2007) Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures. Appl Phys Lett 90:251112

    Article  Google Scholar 

  10. Liao H, Nehl CL, Hafner H (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1(2):201–208

    Article  CAS  Google Scholar 

  11. Kah JCY, Kho KW, Lee CGL, Sheppard CJR, Shen ZX, Soo KC, Olivo MC (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomedicine 2:4

    Google Scholar 

  12. Papanikolaou N (2007) Optical properties of metallic nanoparticle arrays on a thin metallic film. Phys Rev B 75:235426

    Article  Google Scholar 

  13. Christ A, Zentgraf T, Tikhodeev SG, Gippius NA, Martin OJF, Kuhl J, Giessen H (2006) Interaction between localized and delocalized surface Plasmon polariton modes in a metallic photonic crystal. Phys Stat Sol (b) 243,10:2344

    Article  Google Scholar 

  14. Nordlander P, Prodan E (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4(11):2209

    Article  CAS  Google Scholar 

  15. Félidj N, Aubard J, Lévi G, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays. Phys Rev B 66:245407

    Article  Google Scholar 

  16. Holland WR, Hall DG (1984) Frequency shifts of an electric-dipole resonance near a conducting surface. Phys Rev Lett 52:1041

    Article  CAS  Google Scholar 

  17. Leitner A, Zhao Z, Brunner H, Aussenegg FR, Wokaun A (1993) Optical properties of a metal island film close to a smooth metal surface. Appl Opt 32:1

    Article  Google Scholar 

  18. Maaroof AI, Sutherland DS (2010) Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces. J Phys D Appl Phys 43:405301

    Article  Google Scholar 

  19. Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman Spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J Phys Chem B 106:4853

    Article  Google Scholar 

  20. Schueler PA, Ives JT, Delacroix F, Lacy WB, Becker PA, Li JM, Caldwell KD, Drake B, Harris JM (1993) Physical structure, optical resonance and surface enhanced Raman-scattering of silver island films on suspended polymer latex-particles. Anal Chem 65:223177

    Article  Google Scholar 

  21. Maaroof AI, Cortie MB, Harris N, Wieczorek L (2008) Mie and Bragg plasmons in subwavelength silver semi-shells. Small 4 12:2292

    Google Scholar 

  22. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:4510549

    Google Scholar 

  23. Miroshnichenko AE, Flach S, Kivshar YS (2007) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298, arXiv:0902.3014v4

    Article  Google Scholar 

  24. Christ A, Ekinci Y, Solak HH, Gippius NA, Tikhodeev SG, Martin OJF (2007) Controlling the Fano interference in a plasmonic lattice. Phy Rev B 76:201405

    Article  Google Scholar 

  25. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA (2009) Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. AcsNano 3(3):643

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by grants from the Danish National research council (FNU 09-065929), the Innovation Consortium GENIUS, and the EU FP7 project INGENIOUS NMP4-SL-2009-248236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas I. Maaroof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maaroof, A.I., Nygaard, J.V. & Sutherland, D.S. Plasmon Hybridization in Silver Nanoislands as Semishells Arrays Coupled to a Thin Metallic Film. Plasmonics 6, 419–425 (2011). https://doi.org/10.1007/s11468-011-9220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9220-9

Keywords

Navigation