Skip to main content
Log in

Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A cost-effective approach to enhancing broadband light trapping in ultrathin bulk heterojunction organic photovoltaic (OPV) devices is proposed. This is achieved by simply inserting an array of Al nanodisks at the interface of the ITO anode and the organic active layer; forming circular plasmonic nanopatch cavities (between the nanodisks and the Al cathode) that sandwich the active layer. Through interactions between the surface plasmon polaritons localized at the nanodisk and the cathode, a tunable broadband resonance peak spanning 450–700 nm in the scattering cross-section spectrum is formed, thereby enhancing the electromagnetic field in the active layer. Compared to an OPV device with a 60-nm-thick PCPDTBT/PC60BM layer, our numerical simulations reveal that integrated absorption enhancements of up to 40 % can be achieved in an equivalent device integrated with an array of nanodisks with a diameter of 100 nm and a periodicity of 250 nm. From the analysis of the structure–performance relationships, implications for the design of these nanopatch cavities for light harvesting in ultrathin OPV devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nat Photon 3(5):297–302, http://www.nature.com/nphoton/journal/v3/n5/suppinfo/nphoton.2009.69_S1.html

    Article  CAS  Google Scholar 

  2. Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv Mater 22(20):E135–E138. doi:10.1002/adma.200903528

    Article  CAS  Google Scholar 

  3. Tumbleston JR (2009) Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer. Appl Phys Lett 94(4):043305

    Article  Google Scholar 

  4. Tumbleston JR, Ko D-H, Samulski ET, Lopez R (2009) Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers. Opt Express 17(9):7670–7681

    Article  CAS  Google Scholar 

  5. Ko D-H, Tumbleston JR, Zhang L, Williams S, DeSimone JM, Lopez R, Samulski ET (2009) Photonic crystal geometry for organic solar cells. Nano Lett 9(7):2742–2746. doi:10.1021/nl901232p

    Article  CAS  Google Scholar 

  6. Agrawal M, Peumans P (2008) Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells. Opt Express 16(8):5385–5396

    Article  Google Scholar 

  7. Tvingstedt K, Dal Zilio S, Inganäs O, Tormen M (2008) Trapping light with micro lenses in thin film organic photovoltaic cells. Opt Express 16(26):21608–21615

    Article  CAS  Google Scholar 

  8. Gjessing J, Marstein ES, Sudbø A (2010) 2D back-side diffraction grating for improved light trapping in thin silicon solar cells. Opt Express 18(6):5481–5495

    Article  CAS  Google Scholar 

  9. Niggemann M, Riede M, Gombert A, Leo K (2008) Light trapping in organic solar cells. Phys Status Solidi (a) 205(12):2862–2874. doi:10.1002/pssa.200880461

    Article  CAS  Google Scholar 

  10. Gombert A (2004) Some application cases and related manufacturing techniques for optically functional microstructures on large areas. Opt Eng 43(11):2525

    Article  Google Scholar 

  11. Kulkarni AP, Noone KM, Munechika K, Guyer SR, Ginger DS (2010) Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett 10(4):1501–1505. doi:10.1021/nl100615e

    Article  CAS  Google Scholar 

  12. Diukman I, Tzabari L, Berkovitch N, Tessler N, Orenstein M (2011) Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer. Opt Express 19(S1):A64–A71

    Article  CAS  Google Scholar 

  13. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  14. Kim C-H, Cha S-H, Kim SC, Song M, Lee J, Shin WS, Moon S-J, Bahng JH, Kotov NA, Jin S-H (2011) Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications. ACS Nano 5(4):3319–3325. doi:10.1021/nn200469d

    Article  CAS  Google Scholar 

  15. Xue M (2011) Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Appl Phys Lett 98(25):253302

    Article  Google Scholar 

  16. Beck FJ (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105(11):114310

    Article  Google Scholar 

  17. Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18(S2):A237–A245

    Article  CAS  Google Scholar 

  18. Tsai S-J, Ballarotto M, Romero DB, Herman WN, Kan H-C, Phaneuf RJ (2010) Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell. Opt Express 18(S4):A528–A535

    Article  CAS  Google Scholar 

  19. Kim K (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87(20):203113

    Article  Google Scholar 

  20. Topp K, Borchert H, Johnen F, Tunc AV, Knipper M, von Hauff E, Parisi J, Al-Shamery K (2009) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells†. J Phys Chem A 114(11):3981–3989. doi:10.1021/jp910227x

    Article  Google Scholar 

  21. Kochergin V (2011) Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices. Appl Phys Lett 98(13):133305

    Article  Google Scholar 

  22. Akimov Y, Koh W (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6(1):155–161. doi:10.1007/s11468-010-9181-4

    Article  CAS  Google Scholar 

  23. Zhu X, Zhang J, Xu J, Yu D (2011) Vertical plasmonic resonant nanocavities. Nano Lett 11(3):1117–1121. doi:10.1021/nl104024j

    Article  CAS  Google Scholar 

  24. Ameling R (2010) Cavity-enhanced localized plasmon resonance sensing. Appl Phys Lett 97(25):253116

    Article  Google Scholar 

  25. Manolatou CR, Rana F (2008) Subwavelength nanopatch cavities for semiconductor plasmon lasers. IEEE J Quantum Electron 44(5):435–447. doi:10.1109/JQE.2008.916707

    Article  CAS  Google Scholar 

  26. Amit ML et al (2011) Lasing in subwavelength semiconductor nanopatches. Semicond Sci Technol 26(1):014013

    Article  Google Scholar 

  27. Catchpole KR (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93(19):191113

    Article  Google Scholar 

  28. Kuttge M, García de Abajo FJ, Polman A (2009) Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett 10(5):1537–1541. doi:10.1021/nl902546r

    Article  Google Scholar 

  29. Balanis CA (2005) Antenna theory—analysis and design, 3rd edn. Wiley, New York

    Google Scholar 

  30. Sandu T, Vrinceanu D, Gheorghiu E (2011) Surface plasmon resonances of clustered nanoparticles. Plasmonics 6(2):407–412. doi:10.1007/s11468-011-9218-3

    Article  Google Scholar 

  31. Hägglund C (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92(5):053110

    Article  Google Scholar 

  32. Beck FJ, Verhagen E, Mokkapati S, Polman A, Catchpole KR (2011) Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express 19(S2):A146–A156

    Article  CAS  Google Scholar 

  33. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422. doi:10.1126/science.1089171

    Article  CAS  Google Scholar 

  34. Vermon KC, Funston AM, Novo C, Gómez DE, Mulvaney P, Davis TJ (2010) Influence of particle–substrate interaction on localized plasmon resonances. Nano Lett 10(6):2080–2086. doi:10.1021/nl100423z

    Article  Google Scholar 

  35. Hoppe H, Sariciftci NS, Meissner D (2002) Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells. Mol Cryst Liq Cryst 385(1):113–119. doi:10.1080/713738799

    Article  CAS  Google Scholar 

  36. Monestier F, Simon J-J, Torchio P, Escoubas L, Flory F, Bailly S, de Bettignies R, Guillerez S, Defranoux C (2007) Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol Energy Mater Sol Cells 91(5):405–410. doi:10.1016/j.solmat.2006.10.019

    Article  CAS  Google Scholar 

  37. Dennler G (2007) Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence. J Appl Phys 102(12):123109

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the Singapore National Research Foundation through the Competitive Research Programme under Project No. NRF-CRP5-2009-04 (X. Liu and T. C. Sum). T. C. Sum acknowledges the financial support from the Nanyang Technological University start-up grant (M58110068) and from the Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant – RG 49/08 (M52110082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tze Chien Sum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Liu, X., Oo, T.Z. et al. Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices. Plasmonics 7, 677–684 (2012). https://doi.org/10.1007/s11468-012-9358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9358-0

Keywords

Navigation