Skip to main content
Log in

Size-Dependent Surface Enhanced Fluorescence of Gold Nanorod: Enhancement or Quenching

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The size-dependent surface enhanced fluorescence (SEF) of a gold nanorod (GNR) on a vicinal molecule is studied systematically by using the multiple multipole method. The enhancement factors (EFs) of GNRs of different sizes (radius: a = 7 or 10 nm) with the same aspect ratio (AR), e.g., 3 or 3.43, on the fluorescence of a molecule at different locations with various orientations excited at the longitudinal surface plasmon resonance (SPR) of a GNR are discussed in detail. The numerical results show that the EF of a GNR is sensitive not only to the molecular location and orientation but also to the size. The effective EF (EEF), the average of the EF over all possible orientations at a specific location, is further calculated. According to the EEF, the proximity of the end-cap of a GNR is a strong enhancing zone, while the waist area of the GNR is a relatively weak zone. Moreover, for the same AR, the EEF of a bigger GNR (a ≥ 10 nm) is larger than that of a smaller one. Hence, the SEF performance of a bigger GNR on the fluorescence can be a very strong enhancement if the molecule is close to the end-cup excited at the longitudinal SPR. On the contrary, the performance of a smaller GNR could be a quenching if the molecule is near the waist. In addition, the Stokes-shift effect of fluorescence on the EF is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ACS:

Absorption cross section

AR:

Aspect ratio

ECS:

Extinction cross section

EEF:

Effective enhancement factor

EF:

Enhancement factor

EM:

Electromagnetic

FDTD:

Finite difference time domain

FRET:

Forster resonance energy transfer

GNR:

Gold nanorod

MEF:

Mean enhancement factor

MMP:

Multiple multipole

NIR:

Near-infrared

NP:

Nanoparticle

SCS:

Scattering cross section

SEF:

Surface enhanced fluorescence

SPR:

Surface plasmon resonance

References

  1. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664

    Article  CAS  Google Scholar 

  2. Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709

    Article  CAS  Google Scholar 

  3. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  4. Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107(18):3372–3378

    Article  CAS  Google Scholar 

  5. Ming T, Zhao L, Chen H, Woo KC, Wang J, Lin HQ (2011) Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod–fluorophore hybrid nanostructures. Nano Lett 11(6):2296–2303

    Article  CAS  Google Scholar 

  6. Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J, Yan C (2009) Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett 9(11):3896–3903

    Article  CAS  Google Scholar 

  7. Ni W, Yang Z, Chen H, Li L, Wang J (2008) Coupling between molecular and plasmonic resonances in freestanding dye–gold nanorod hybrid nanostructures. J Am Chem Soc 130:6692–6693

    Article  CAS  Google Scholar 

  8. Ni W, Ambjornsson T, Apell SP, Chen H, Wang J (2010) Observing plasmonic–molecular resonance coupling on single gold nanorods. Nano Lett 10:77–84

    Article  CAS  Google Scholar 

  9. Yang Z, Ni W, Kou X, Zhang S, Sun Z, Sun LD, Wang J, Yan CH (2008) Incorporation of gold nanorods and their enhancement of fluorescence in mesostructured silica thin films. J Phys Chem C 112:18895–18903

    CAS  Google Scholar 

  10. Fu Y, Zhang J, Lakowicz JR (2010) Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J Am Chem Soc 132:5540–5541

    Article  CAS  Google Scholar 

  11. Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3(3):744–752

    Article  CAS  Google Scholar 

  12. Li X, Kao FJ, Chuang CC, He S (2010) Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. Opt Express 18(11):11335–11346

    Article  CAS  Google Scholar 

  13. Li X, Qian J, Jiang L, He S (2009) Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl Phys Lett 94:063111

    Article  Google Scholar 

  14. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    Article  Google Scholar 

  15. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  16. Chang WS, Ha JW, Slaughter LS, Link S (2010) Plasmonic nanorod absorbers as orientation sensors. PNAS 107(7):2781–2786

    Article  CAS  Google Scholar 

  17. Stender AS, Wang G, Sun W, Fang N (2010) Influence of gold nanorod geometry on optical response. ACS Nano 4(12):7667–7675

    Article  CAS  Google Scholar 

  18. Wang Z, Zong S, Yang J, Li J, Cui Y (2011) Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 26:2883–2889

    Article  CAS  Google Scholar 

  19. Liaw JW, Tsai SW, Chen KL, Hsu FY (2010) Single-photon and two-photon cellular imagings of gold nanorods and dye. J Nanosci Nanotechnol 10(1):467–473

    Article  CAS  Google Scholar 

  20. Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19:3136–3141

    Article  CAS  Google Scholar 

  21. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5:701–708

    Article  CAS  Google Scholar 

  22. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  23. Chen YS, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878

    Article  CAS  Google Scholar 

  24. Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354

    Article  CAS  Google Scholar 

  25. Myroshnychenko V, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Liz-Marzán LM, García de Abajo FJ (2008) Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method. Adv Mater 20:4288–4293

    Article  CAS  Google Scholar 

  26. Mohammadi A, Sandoghdar V, Agio M (2008) Gold nanorods and nanospheroids for enhancing spontaneous emission. New J Phys 10:105015

    Article  Google Scholar 

  27. Liaw JW (2007) The quantum yield of a metallic nanoantenna. Appl Phys A 89:357–362

    Article  CAS  Google Scholar 

  28. Lu G, Zhang T, Li W, Hou L, Liu J, Gon Q (2011) Single-molecule spontaneous emission in the vicinity of an individual gold nanorod. J Phys Chem C 115:15822–15828

    Article  CAS  Google Scholar 

  29. Duan J, Nepal D, Park K, Haley JE, Vella JH, Urbas AM, Vaia RA, Pachter R (2011) Computational prediction of molecular photoresponse upon proximity to gold nanorods. J Phys Chem C 115:13961–13967

    Article  CAS  Google Scholar 

  30. Liaw JW, Liu CL, Tu WM, Sun CS, Kuo MK (2010) Average enhancement factor of molecules-doped coreshell (Ag@SiO2) on fluorescence. Opt Express 18(12):12788–12797

    Article  CAS  Google Scholar 

  31. Liaw JW, Liu CL, Kuo MK (2011) Dual-band plasmonic enhancement of Ag–NS@SiO2 on gain medium’s spontaneous emission. Plasmonics 6:673–680

    Article  CAS  Google Scholar 

  32. Liaw JW, Chen JH, Chen CS, Kuo MK (2009) Purcell effect of nanoshell dimer on single molecule’s fluorescence. Opt Express 17(16):13532–13540

    Article  CAS  Google Scholar 

  33. Liaw JW, Chen CS, Chen JH (2011) Plasmonic effect of gold nanospheroid on spontaneous emission. Prog Electromagn Res B 31:283–296

    Google Scholar 

  34. Moreno E, Erni D, Hafner C, Vahldieck R (2002) Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. J Opt Soc Am A 19(1):101–111

    Article  Google Scholar 

  35. Liaw JW, Kuo MK, Liao CN (2005) Plasmon resonance of spherical and ellipsoidal nanoparticles. J Electromagn Waves Appl 19(13):1787–1794

    Article  Google Scholar 

  36. Chau YF, Chen MW, Tsai DP (2009) Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod. Appl Opt 48(3):617–622

    Article  CAS  Google Scholar 

  37. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  38. Viste P, Plain J, Jaffiol R, Vial A, Adam PM, Royer P (2010) Enhancement and quenching regimes in metal–semiconductor hybrid optical nanosources. ACS Nano 4(2):759–764

    Article  CAS  Google Scholar 

  39. Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Forster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56

    Article  CAS  Google Scholar 

  40. Reil F, Hohenester U, Krenn JR, Leitner A (2008) Forster-type resonant energy transfer influenced by metal nanoparticles. Nano Lett 8(12):4128–4133

    Article  CAS  Google Scholar 

  41. Lessard-Viger M, Rioux M, Rainville L, Boudreau D (2009) FRET enhancement in multilayer core-shell nanoparticles. Nano Lett 9(8):3066–3071

    Article  CAS  Google Scholar 

  42. Komarala VK, Bradley AL, Rakovich YP, Byrne SJ, Gun’ko YK, Rogach AL (2008) Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl Phys Lett 93:123102

    Article  Google Scholar 

  43. Xie HY, Chung HY, Leung PT, Tsai DP (2009) Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: nonlocal optical effects. Phys Rev B 80:155448

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by National Science Council, Taiwan, R.O.C. (NSC 99-2221-E-182-030-MY3) and Chang Gung Memorial Hospital (CMRPD290041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiunn-Woei Liaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaw, JW., Tsai, HY. & Huang, CH. Size-Dependent Surface Enhanced Fluorescence of Gold Nanorod: Enhancement or Quenching. Plasmonics 7, 543–553 (2012). https://doi.org/10.1007/s11468-012-9341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9341-9

Keywords

Navigation