Skip to main content
Log in

The quantum yield of a metallic nanoantenna

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The local-field factor and quantum yield of a metallic nanoantenna are studied to identify its enhancement of an emitter’s emission within the feed gap. For simplicity, a two-dimensional model, an Au nanoantenna with an emitter at the center, is studied. The electromagnetic field is solved by a set of surface integral equations. An incident plane wave irradiating the nanoantenna is modeled to simulate the excitation of the emitter by illuminating light, and the local-field factor is used to evaluate the amplification of the electric field in the feed gap of the metallic nanoantenna. Once the emitter becomes excited, a model of an electric dipole interacting with the nanoantenna is used for calculating the radiative and nonradiative powers to obtain the quantum yield of the excited emitter in the presence of the nanoantenna. The numerical results of quantum yield indicate that an Au nanoantenna acts as a low-pass filter for the emission of the emitter. Moreover, the smaller the feed gap, the larger the local-field factor but the less the quantum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tamaru, H. Kuwata, H.T. Miyazaki, K. Miyano, Appl. Phys. Lett. 80, 1826 (2002)

    Article  ADS  Google Scholar 

  2. H. Xu, E.J. Bjerneld, M. Kall, L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999)

    Article  ADS  Google Scholar 

  3. V.V. Klimov, D.V. Guzatov, Phys. Rev. B 75, 024303 (2007)

    Article  ADS  Google Scholar 

  4. P. Muhlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)

    Article  ADS  Google Scholar 

  5. D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G.S. Kino, W.E. Moerner, Nano Lett. 4, 957 (2004)

    Article  ADS  Google Scholar 

  6. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)

    Article  ADS  Google Scholar 

  7. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  8. J. Azoulay, A. Debarre, A. Richard, P. Tchenio, Europhys. Lett. 51, 374 (2000)

    Article  ADS  Google Scholar 

  9. M. Thomas, J.-J. Greffet, R. Carminati, J.R. Arias-Gonzalez, Appl. Phys. Lett. 85, 3863 (2004)

    Article  ADS  Google Scholar 

  10. S. Kuhn, U. Hakanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)

    Article  ADS  Google Scholar 

  11. J.-W. Liaw, J. Opt. Soc. Am. A 23, 108 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.-W. Liaw, Eng. Anal. Bound. Elem. 31, 299 (2007)

    Article  Google Scholar 

  13. R. Carminati, J.-J. Greffet, C. Henkel, J.M. Vigonreux, Opt. Commun. 261, 368 (2006)

    Article  ADS  Google Scholar 

  14. B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  15. J.P. Kottmann, O.J.F. Martin, Opt. Express 8, 655 (2001)

    Article  ADS  Google Scholar 

  16. E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004)

    Article  ADS  Google Scholar 

  17. E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A.M. Javier, W.J. Parak, Nano Lett. 5, 585 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-W. Liaw.

Additional information

PACS

78.67.-n; 33.80.-b; 33.50.-j; 42.30.-d; 42.50.Hz; 81.07.Pr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaw, JW. The quantum yield of a metallic nanoantenna. Appl. Phys. A 89, 357–362 (2007). https://doi.org/10.1007/s00339-007-4133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4133-3

Keywords

Navigation