Skip to main content
Log in

Optical Properties of Core–Shell Gold–Silver and Silver–Gold Nanoparticles for Near UV and Visible Radiation Wavelengths

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Modeling of optical properties of spherical core–shell gold–silver and silver–gold nanoparticles (NPs) was carried out based on extended Mie theory for radiation wavelengths in the range 300 ≤ λ ≤ 650 nm. Efficiency factors of absorption, scattering, and extinction of radiation by core–shell NPs in the range of the radii 5–100 nm and in the range of shell thicknesses 0–40 nm were calculated. Results show the nonlinear dependences of optical properties of core–shell gold–silver and silver–gold nanoparticles on radiation wavelengths, core radii, and shell thicknesses. These results can be applied for photonic technologies of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adleman JR, Boyd DA, Goodwin DG, Psaltis D (2009) Heterogeneous catalysis mediated by plasmon heating. Nano Lett 9:4417–4420

    Article  CAS  Google Scholar 

  2. Narayanan R, El-Sayed MA (2008) Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top Catal 47:15–23

    Article  CAS  Google Scholar 

  3. Zheludev N (2006) Single nanoparticle as photonic switch and optical memory element. J Opt A: Pure Appl Opt 8:S1–S9

    Article  Google Scholar 

  4. Stalmashonak A, Podlipensky A, Seifert G, Graener H (2009) Intensity driven laser induced transformation of Ag nanospheres to anisotropic shapes. Appl Phys B 94:459–465

    Article  CAS  Google Scholar 

  5. Stepanov AL (2003) Modification of implanted metal nanoparticles in the dielectrics by high-power laser pulses. Rev Adv Mater Sci 4:123–138

    CAS  Google Scholar 

  6. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer series in material science, vol. 25. Springer, Heidelberg

    Google Scholar 

  7. Halas N (2009) The photonic nanomedicine revolution: let the human side of nanotechnology emerge. Nanomedicine 4:369–375

    Article  Google Scholar 

  8. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using of gold nanorods. J Am Chem Soc 128:2115–2120

    Article  CAS  Google Scholar 

  9. Huang X, Jain P, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–221

    Article  Google Scholar 

  10. Pustovalov VK, Smetannikov AS, Zharov VP (2008) Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys Lett 5:775–792

    Article  CAS  Google Scholar 

  11. Pustovalov V, Astafyeva L, Jean B (2009) Computer modeling of the optical properties and heating of spherical gold and silica–gold nanoparticles for laser combined imaging and photothermal treatment. Nanotechnology 20:225105

    Article  CAS  Google Scholar 

  12. Pustovalov V, Astafyeva L, Galanzha E, Zharov VP (2010) Thermo-optical analysis and selection of the properties of absorbing nanoparticles for laser applications in cancer nanotechnology. Cancer Nanotechnol 1:35–46

    Article  CAS  Google Scholar 

  13. Csaki A, Garwe F, Steinbruck A, Maubach G, Festag G, Wiese A, Riemann I, Koenig K, Fritzsche W (2007) A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett 7:247–253

    Article  CAS  Google Scholar 

  14. Csaki A, Schneider T, Wirth J, Jahr N, Steinbrück A, Stranik O, Garwe F, Müller R, Fritzsche W (1950) (2011) Molecular plasmonics: light meets molecules at the nanoscale. Philos Trans A 369:3483–3496

    Article  Google Scholar 

  15. Steinbrück A, Stranik O, Csaki A, Fritzsche W (2011) Sensoric potential of gold–silver core–shell nanoparticles. Anal Bioanal Chem 01(4):1241–1249

    Article  Google Scholar 

  16. Major KJ, De C, Obare SO (2009) Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics 4:61–78

    Article  CAS  Google Scholar 

  17. Hubenthal F, Ziegler T, Hendrich C, Alschinger M, Trager F (2005) Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles. Eur Phys J D 34:165–168

    Article  CAS  Google Scholar 

  18. Fintermann J, Schatz G, Shufford K (2006) Calculations of the optical properties of layered metal nanospheres. Nanoscape 3:29–37

    Google Scholar 

  19. Steinbrück A, Csaki A, Festag G, Fritzsche W (2006) Preparation and optical characterization of core–shell bimetal nanoparticles. Plasmonics 1:79–85

    Article  Google Scholar 

  20. Steinbrück A, Csaki A, Ritter K, Leich M, Kohler J, Fritzsche W (2009) Gold and gold–silver core–shell nanoparticles constructs with defined size based on DNA hybridization. J Nanopart Res 11:623–633

    Article  Google Scholar 

  21. Hubenthal F, Borg N, Trager F (2008) Optical properties and ultrafast dynamics in gold–silver alloy and core–shell nanoparticles. Appl Phys B 93:39–45

    Article  CAS  Google Scholar 

  22. Companini G, Messina E, Puglisi O, Cataliotti R, Nicolosi V (2008) Spectroscopic evidence of a core–shell structure in the earlier formation stages of Au–Ag nanoparticles by pulse laser ablation in water. Chem Phys Lett 457:386–390

    Article  Google Scholar 

  23. Horisberger M (1981) Colloidal gold—a cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy. Scan Electron Microsc 2:9–32

    Google Scholar 

  24. Csaki A, Kaplanek P, Möller R, Fritzsche W (2003) The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology 14:1262–1268

    Article  CAS  Google Scholar 

  25. Möller R, Csaki A, Köhler JM, Fritzsche W (2001) Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement. Langmuir 17(18):5426–5430

    Article  Google Scholar 

  26. Aden AL, Kerker MJ (1951) Scattering of electromagnetic waves from two concentric spheres. J Appl Phys 22:1242–1246

    Article  Google Scholar 

  27. Babenko VA, Astafyeva LG, Kuzmin VN (2003) Electromagnetic scattering in disperse media. Inhomogeneous and anisotropic particles. Springer Praxis, Heidelberg

    Google Scholar 

  28. Cattawar GW, Hood DA (1976) Electromagnetic scattering from a spherical polydispersion of coated spheres. Appl Opt 15:1996–1999

    Article  Google Scholar 

  29. Bhandari R (1985) Scattering coefficients for a multilayered sphere: analytic expressions and algorithms. Appl Opt 24:1960–1967

    Article  CAS  Google Scholar 

  30. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  31. Pustovalov VK, Babenko VA (2004) Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Phys Lett 1:516–520

    Article  CAS  Google Scholar 

  32. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the German Research Foundation DFG (FR 1348/12-1) for W.F. and by the Belarusian State Program “Convergence 2.4.02” for V.K.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Pustovalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustovalov, V.K., Astafyeva, L.G. & Fritzsche, W. Optical Properties of Core–Shell Gold–Silver and Silver–Gold Nanoparticles for Near UV and Visible Radiation Wavelengths. Plasmonics 7, 469–474 (2012). https://doi.org/10.1007/s11468-012-9330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9330-z

Keywords

Navigation