Skip to main content
Log in

Gold and gold–silver core-shell nanoparticle constructs with defined size based on DNA hybridization

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles represent versatile building blocks in material science and nanotechnology. Thereby, the defined assembly of nanostructures (13 and 56 nm in diameter, respectively) is of significant importance. Short DNA sequences can be bound to the nanoparticle surface thus enabling highly specific DNA hybridization-driven events that direct the formation of nanoparticle constructs.

In this paper, examples for the defined formation of gold nanoparticle constructs are demonstrated. In addition, gold–silver core-shell nanoparticles are introduced as further building blocks for the hybridization-controlled formation of nanoparticle constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr, Schultz PG (1996) Organization of “nanocrystal molecules” using DNA. Nature 382:609–611

    Article  PubMed  ADS  CAS  Google Scholar 

  • Cao Y-W, Jin R, Mirkin CA (2001) DNA-modified core-shell Ag/Au nanoparticles. J Am Chem Soc 123:7961–7962

    Article  PubMed  CAS  Google Scholar 

  • Csaki A, Maubach G, Born D, Reichert J, Fritzsche W (2002) DNA-based molecular nanotechnology. Single Mol 3:275–280

    Article  ADS  CAS  Google Scholar 

  • Csaki A, Kaplanek P, Möller R, Fritzsche W (2003) The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology 14:1262–1268

    Article  ADS  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  PubMed  CAS  Google Scholar 

  • Elghanian R, Stofhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  PubMed  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature: Phys Sci 241:20–22

    ADS  CAS  Google Scholar 

  • Fritzsche W, Taton TA (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14:R63–R73

    Article  ADS  CAS  Google Scholar 

  • Huo F, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306

    Article  CAS  Google Scholar 

  • Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654

    Article  PubMed  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical Properties of Metal Clusters, Springer series in materials science, vol 25. Springer, Heidelberg

    Google Scholar 

  • Li Z, Jin R, Mirkin CA, Letsinger RL (2002) Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res 30:1558–1562

    Article  PubMed  CAS  Google Scholar 

  • Link S, El-Sayed M (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  • Loweth CJ, Caldwell WB, Peng X, Alivisatos AP, Schultz PG (1999) DNA als Gerüst zur Bildung von Aggregaten aus Gold-Nanokristallen. Angew Chem 111:1925–1929

    Article  Google Scholar 

  • Mie G (1908) Beitrage zur Optik trüber Medien speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  PubMed  ADS  CAS  Google Scholar 

  • Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

    Article  ADS  CAS  Google Scholar 

  • Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  • Nykypanchuk D, Maye MM, van der Lelie D, Gang O (2008) DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–552

    Article  PubMed  ADS  CAS  Google Scholar 

  • Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556

    Article  PubMed  ADS  CAS  Google Scholar 

  • Rasband WS, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997–2007

  • Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano lett 3:935–938

    Article  CAS  Google Scholar 

  • Reynolds RA III, Mirkin CA, Letsinger RL (2000) Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J Am Chem Soc 122:3795–3796

    Article  CAS  Google Scholar 

  • Schmid G (2003) Nanoparticles—From theory to applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  PubMed  Google Scholar 

  • Steinbrück A, Csaki A, Festag G, Fritzsche W (2006) Preparation and optical characterization of core-shell bimetal nanoparticles. Plasmonics 1:79–85

    Article  Google Scholar 

  • Steinbrück A, Csaki A, Ritter K, Leich M, Köhler JM, Fritzsche W (2008) Gold–silver and silver–silver nanoparticle constructs based on DNA hybridization of thiol- and amino-functionalized oligonucleotides. J Biophotonics 1:104–113.

    Article  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  • Taton TA, Lu G, Mirkin CA (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J Am Chem Soc 123:5164–5165

    Article  PubMed  CAS  Google Scholar 

  • Tokareva I, Hutter E (2004) Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films. J Am Chem Soc 124:15784–15789

    Article  Google Scholar 

  • Turkevich J, Stevenson PL, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Yao H, Yi C, Tzang C-H, Zhu J, Yang M (2007) DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures. Nanotechnology 18:015102

    Article  ADS  Google Scholar 

  • Yguerabide J, Yguerabide E (1998a) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications I. Theory. Anal Biochem 262:137–156

    Article  PubMed  CAS  Google Scholar 

  • Yguerabide J, Yguerabide E (1998b) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications II. Experimental characterization. Anal Biochem 262:157–176

    Article  PubMed  CAS  Google Scholar 

  • Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano lett 1:32–35

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge financial support from the European Union (project NUCAN; NMP-STREP 013775) and Katrin Buder (FLI Jena) for help with TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Steinbrück.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbrück, A., Csaki, A., Ritter, K. et al. Gold and gold–silver core-shell nanoparticle constructs with defined size based on DNA hybridization. J Nanopart Res 11, 623–633 (2009). https://doi.org/10.1007/s11051-008-9401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9401-4

Keywords

Navigation