Skip to main content
Log in

Optical properties and ultrafast electron dynamics in gold–silver alloy and core–shell nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Silver and gold are the two most popular metals used for many nanoparticle applications, such as surface enhanced Raman scattering or surface enhanced fluorescence, in which the local field enhancement associated with the excitation of the localized surface-plasmon–polariton resonance (SPR) is exploited. Therefore, tunability of the SPR over a wide energy range is required. For this purpose we have investigated core–shell nanoparticles composed of gold and silver with different shell thicknesses as well as the impact of alloying on these nanoparticles due to a tempering process. The nanoparticles were prepared by subsequent deposition of Au and Ag atoms or vice versa on quartz substrates followed by diffusion and nucleation. Their linear extinction spectra were measured as a function of shell thickness and annealing temperature. It turned out that different gold shell thicknesses on silver cores allow a tuning of the SPR position from 2.79 to 2.05 eV, but interestingly without a significant change on the extinction amplitude. Heating of core–shell nanoparticles up to only 540 K leads to the formation of alloy nanoparticles, accompanied by a back shift of the SPR to 2.60 eV. Calculations performed in quasi-static approximation describe the experimental results quite well and prove the structural assignments of the samples. In additional experiments, we applied the well-established persistent spectral hole burning technique to the alloy nanoparticles in order to determine the ultrafast dephasing time T 2. We obtained a dephasing time of T 2=(8.1±1.6) fs, in good agreement with the dephasing time of T 2,∞=8.9 fs, which is already included in the dielectric function of the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Google Scholar 

  2. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Orlando, 1985)

    Google Scholar 

  3. J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Träger, Phys. Rev. Lett. 89, 257404 (2002)

    Article  ADS  Google Scholar 

  4. F. Stietz, Appl. Phys. A 72, 381 (2001)

    Article  ADS  Google Scholar 

  5. W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, Phys. Rev. B 31, 2539 (1995)

    Article  ADS  Google Scholar 

  6. F. Hubenthal, T. Ziegler, C. Hendrich, M. Alschinger, F. Träger, Eur. Phys. J. D 34, 165–168 (2005)

    ADS  Google Scholar 

  7. H. Ouacha, C. Hendrich, F. Hubenthal, F. Träger, Appl. Phys. B 81, 663–668 (2005)

    Article  ADS  Google Scholar 

  8. H. Wang, D.W. Brandl, P.J. Nordlander, N.J. Halas, Acc. Chem. Res. 40, 53–62 (2007)

    Article  Google Scholar 

  9. H. Wang, D. Brandl, F. Le, P.J. Nordlander, N.J. Halas, Nano Lett. 6, 827–832 (2006)

    Article  ADS  Google Scholar 

  10. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667–1670 (1997)

    Article  ADS  Google Scholar 

  11. S. Nie, S.R. Emroy, Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  12. G. Chumanov, T.M. Cotton, Proc. SPIE 3608, 204–210 (1999)

    Article  ADS  Google Scholar 

  13. J.B. Jackson, N.J. Halas, Proc. Natl. Acad. Sci. USA 101, 17930–17935 (2004)

    Article  ADS  Google Scholar 

  14. D. Blázquez Sánchez, L. Gallasch, H. Schmidt, H.-D. Kronfeldt, N. Borg, F. Hubenthal, F. Träger, Proc. SPIE 6099, 8–17 (2006)

    ADS  Google Scholar 

  15. I. Gryczynski, J. Malicka, Y. Shen, Z. Gryczynski, J. Lakowicz, J. Phys. Chem. 106, 2191–2195 (2002)

    Article  Google Scholar 

  16. J. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria, I. Gryczynski, Biochem. Biophys. Res. Commun. 286, 875–879 (2001)

    Article  Google Scholar 

  17. J. Lakowicz, Anal. Biochem. 298, 1–24 (2001)

    Article  Google Scholar 

  18. M. Alschinger, M. Maniak, F. Stietz, T. Vartanyan, F. Träger, Appl. Phys. B 76, 771–774 (2003)

    ADS  Google Scholar 

  19. K. Watanabe, K.H. Kim, D. Menzel, H.-J. Freund, Phys. Rev. Lett. 99, 225501 (2007)

    Article  ADS  Google Scholar 

  20. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845–910 (2008)

    Article  Google Scholar 

  21. E. Hao, S. Li, C. Bailey, S. Zou, G.C. Schatz, J.T. Hupp, J. Chem. Phys. B 108, 1224–1229 (2004)

    Google Scholar 

  22. A.K. Santra, F. Yang, D.W. Goodman, Surf. Sci 548, 324–332 (2004)

    Article  ADS  Google Scholar 

  23. C.M. Aguirre, C.E. Moran, J.F. Young, N.J. Halas, J. Phys. Chem. B 108, 7040–7045 (2004)

    Article  Google Scholar 

  24. A.M. Kalsin, A.O. Pinchuk, S.K. Smoukov, M. Paszewski, G.C. Schatz, B.A. Grzybowski, Nano Lett. 6, 1896–1903 (2006)

    Article  ADS  Google Scholar 

  25. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. 110, 7238–7248 (2006)

    Article  Google Scholar 

  26. K.J. Chau, A.Y. Elezzabi, Phys. Rev. B 73, 085419 (2006)

    Article  ADS  Google Scholar 

  27. M. Liu, P. Guyot-Sionnest, Surf. Interface Anal. 38, 166–170 (2006)

    Article  Google Scholar 

  28. M. Moskovits, I. Srnová-Sloufová, B. Vlcková, J. Chem. Phys. 116, 10435 (2002)

    Article  ADS  Google Scholar 

  29. G. Raschke, S. Brogl, A.S. Susha, A.L. Rogach, T.A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, K. Kürzinger, Nano Lett. 4, 1853–1857 (2004)

    Article  ADS  Google Scholar 

  30. E.A. Coronado, G.C. Schatz, J. Chem. Phys. 119, 3926 (2003)

    Article  ADS  Google Scholar 

  31. E. Prodan, P. Nordlander, N.J. Halas, Nano Lett. 3, 1411 (2003)

    Article  ADS  Google Scholar 

  32. N.K. Grady, N.J. Halas, P. Nordlander, Chem. Phys. Lett. 399, 167–171 (2004)

    Article  ADS  Google Scholar 

  33. M. Dubiel, H. Hofmeister, E. Wendler, J. Non-Cryst. Solids 354, 607–611 (2008)

    Article  ADS  Google Scholar 

  34. W. Benten, N. Nilius, N. Ernst, H.-J. Freund, Phys. Rev. B 72, 045403 (2005)

    Article  ADS  Google Scholar 

  35. D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, S. Gialanella, J. Nanosci. Nanotechnol. 7, 2480–2486 (2007)

    Article  Google Scholar 

  36. F. Calvayrac, P. Reinhard, E. Suraud, C. Ullrich, Phys. Rep. 337, 493 (2000)

    Article  ADS  Google Scholar 

  37. H.-G. Rubahn, Appl. Surf. Sci. 109/110, 575 (1997)

    Article  ADS  Google Scholar 

  38. T. Ziegler, C. Hendrich, F. Hubenthal, T. Vartanyan, F. Träger, Chem. Phys. Lett. 386, 319–324 (2004)

    Article  ADS  Google Scholar 

  39. C. Hendrich, J. Bosbach, F. Stietz, F. Hubenthal, F. Träger, Appl. Phys. B 76, 869–875 (2003)

    Article  ADS  Google Scholar 

  40. T. Wenzel, J. Bosbach, A. Goldmann, F. Stietz, F. Träger, Appl. Phys. B 69, 513–517 (1999)

    Article  ADS  Google Scholar 

  41. T. Yamaguchi, S. Yoshida, A. Kinbara, Thin Solid Films 21, 173 (1974)

    Article  ADS  Google Scholar 

  42. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, F. Träger, Phys. Rev. Lett. 84, 5644–4647 (2000)

    Article  ADS  Google Scholar 

  43. J. Bosbach, D. Martin, F. Stietz, T. Wenzel, F. Träger, Appl. Phys. Lett. 74, 2605–2607 (1999)

    Article  ADS  Google Scholar 

  44. F. Hubenthal, C. Hendrich, H. Ouacha, D. Blázquez Sánchez, F. Träger, Int. J. Mod. Phys. B 19, 2604–2609 (2005)

    Article  ADS  Google Scholar 

  45. F. Hubenthal, T. Ziegler, C. Hendrich, T. Vartanyan, F. Träger, Proc. SPIE 5221, 29–40 (2003)

    Article  ADS  Google Scholar 

  46. T. Vartanyan, J. Bosbach, F. Stietz, F. Träger, Appl. Phys. B 73, 391–399 (2001)

    Article  ADS  Google Scholar 

  47. J. Sinzig, U. Radke, M. Quinten, U. Kreibig, Z. Phys. D 26, 224 (1993)

    Google Scholar 

  48. S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, Phys. Chem. A 103, 1166–1170 (1999)

    Google Scholar 

  49. I. Lee, S.W. Han, K. Kim, Chem. Commun. 18, 1782 (2001)

    Article  Google Scholar 

  50. P. Mulvaney, M. Giersig, H. Henglein, J. Phys. Chem. 97, 7061 (1993)

    Article  Google Scholar 

  51. M. Mandal, S. Kundu, S.K. Ghosh, S. Panigrahi, T.K. Sau, S.M. Yusuf, T. Pal, J. Colloid Interface Sci. 286, 187–194 (2005)

    Article  Google Scholar 

  52. M. Drechsler, Surf. Sci. 108, 549 (1981)

    Article  ADS  Google Scholar 

  53. J.H. Hodak, A. Henglein, M. Giersig, G.V. Hartland, J. Phys. Chem. B 104, 11708–11718 (2000)

    Article  Google Scholar 

  54. M. Dubiel, (2008, in preparation)

  55. K. Ripken, Z. Phys. 250, 228 (1972)

    Article  ADS  Google Scholar 

  56. M. Schlüter, Z. Phys. 250, 78 (1972)

    Google Scholar 

  57. D. Edward, I. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985)

    Google Scholar 

  58. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  59. U. Kreibig, Appl. Phys. 10, 255 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hubenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubenthal, F., Borg, N. & Träger, F. Optical properties and ultrafast electron dynamics in gold–silver alloy and core–shell nanoparticles. Appl. Phys. B 93, 39–45 (2008). https://doi.org/10.1007/s00340-008-3146-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3146-8

PACS

Navigation