Skip to main content
Log in

Near-Field Coupling Method for Subwavelength Surface Plasmon Polariton Waveguides

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A near-field coupling method for studying propagation properties of surface plasmon polariton (SPP) in subwavelength dielectric-loaded SPP waveguides (DLSPPWs) is presented. In this method, a tapered fiber probe is employed to generate a nanometer optical spot. When this spot is near the entrance of the DLSPPW with its polarization parallel to the waveguide, a strong guiding wave is observed by a leakage radiation microscope. For DLSPPWs with a dielectric height of about 600 nm, we observed SPP waves with zigzag propagation patterns at 650 nm wavelength. Such zigzag propagation results in a great reduction of propagation loss. In addition, the zigzag wave has a strong optical confinement. The bending loss for an L-bend DLSPPW is only about 0.4 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bozhevolnyi SI (2008) Plasmonic nanoguides and circuits. Pan Stanford Publishing, Singapore

    Book  Google Scholar 

  2. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 61(5):44–50

    Article  Google Scholar 

  3. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  4. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  5. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photon 1:641–648

    Article  CAS  Google Scholar 

  6. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  7. Steinberger B, Hohenau A, Ditlbacher H, Aussenegg FR, Leitner A, Krenn JR (2007) Dielectric stripes on gold as surface plasmon waveguides: bends and directional couplers. Appl Phys Lett 91:081111

    Article  Google Scholar 

  8. Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405

    Article  Google Scholar 

  9. Massenot S, Grandidier J, Bouhelier A, des Francs GC, Markey L, Weeber J-C, Dereux A, Renger J, Gonzalez MU, Quidant R (2007) Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy. Appl Phys Lett 91:243102

    Article  Google Scholar 

  10. Krasavin AV, Zayats AV (2008) Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys Rev B 78:045425

    Article  Google Scholar 

  11. Holmgaard T, Bozhevolnyi SI, Markey L, Dereux A (2008) Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: excitation and characterization. Appl Phys Lett 92:011124

    Article  Google Scholar 

  12. Dicken MJ, Sweatlock LA, Pacifici D, Lezec HJ, Bhattacharya K, Atwater HA (2008) Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett 8(11):4048–4052

    Article  CAS  Google Scholar 

  13. Gosciniak J, Bozhevolnyi SI, Andersen TB, Volkov VS, Kjelstrup-Hansen J, Markey L, Dereux A (2010) Thermo-optic control of dielectric-loaded plasmonic waveguide components. Optic Express 18:1207–1216

    Article  CAS  Google Scholar 

  14. Krasavin AV, Zayats AV (2010) Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 97:041107

    Article  Google Scholar 

  15. Wei PK, Chen YC, Kuo HL (2003) Systematic variation of polymer jacketed fibres and the effects on tip etching dynamics. J Microsc 210(3):334–337

    Article  Google Scholar 

  16. Karraï K, Grober RD (1995) Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 66:1842–1844

    Article  Google Scholar 

  17. Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1425

    Article  CAS  Google Scholar 

  18. Sönnichsen C, Duch AC, Steininger G, Koch M, von Plessen G, Feldmann J (2000) Launching surface plasmons into nanoholes in metal films. Appl Phys Lett 76:140–142

    Article  Google Scholar 

  19. Buckley R, Berini P (2007) Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Optic Express 15:12174–12182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Science Council, Taiwan (Grant no. NSC-99-3112-B-001-022) and the Nano Program of Academia Sinica, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Kuen Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SY., Jen, TH., Lin, EH. et al. Near-Field Coupling Method for Subwavelength Surface Plasmon Polariton Waveguides. Plasmonics 6, 557–563 (2011). https://doi.org/10.1007/s11468-011-9236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9236-1

Keyword

Navigation