Skip to main content
Log in

Design of efficient coupling configuration with L-shaped plasmoic waveguide and nanoantenna

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A novel design for an efficient coupling configuration, which consists of a L-shaped dielectric loaded surface plasmon polaritons (DLSPPs) waveguide and L-shaped nanoantenna, is proposed and investigated numerically in this paper. We carried out the theoretical analysis for the coupling characteristics by utilizing the finite-difference time-domain (FDTD) method. The factors affecting the coupling efficiency of light from free space to the proposed structure were studied in detail, including the structural parameters and incident light source. The simulation results reveal that the coupling performance of proposed structure with optimized geometric parameters is at least three times enhanced compared to that of a single straight DLSPPs waveguide when the incident light is polarized perpendicular to DLSPPs waveguide at a wavelength of λ = 532 nm. The proposed configuration, which is simple and easy to fabricate, can not only achieve the subwavelength mode confinement but also possesses a relatively high coupling efficiency, thus may potentially be used in nano-photonic coupling circuits and nano-optical manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All the data and materials are in the manuscript.

References

  1. Pitarke, J.M., et al.: Surface plasmons in metallic structures. J. Opt. A Pure Appl. Opt. 7(2), S73–S84 (2005)

    Article  Google Scholar 

  2. Horiguchi, K., et al.: Theoretical consideration of surface-plasmon polaritons based on dynamics of electric dipoles formed on metal surfaces. Proc. SPIE. 5604, 185–194 (2004)

    Article  ADS  Google Scholar 

  3. Pitarke, J.M., et al.: Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70(1), 1–87 (2007)

    Article  ADS  Google Scholar 

  4. Dawson, P., et al.: The interaction of surface plasmon polaritons with a silver film edge. J. Microsc. 194, 578–583 (1999)

    Article  Google Scholar 

  5. Zhang, et al.: Flexible and dynamically tunable attenuator based on spoof surface plasmon polaritons waveguide loaded with graphene. IEEE Trans. Antennas Propag. 67(8), 5582–5589 (2019)

    Article  ADS  Google Scholar 

  6. Aziz: A novel plasmonic waveguide for extraordinary field enhancement of spoof surface plasmon polaritons with low-loss feature. Results Opt. 5, 100116 (2021)

    Article  Google Scholar 

  7. Chen, P., et al.: Design of substrate integrated plasmonic waveguide bandpass filter with T-shaped spoof surface plasmon polaritons. Electromagnetics 40(8), 563–575 (2020)

    Article  Google Scholar 

  8. Xin, Y., et al.: A novel gold-coated PCF polarization filter based on surface plasmon resonance. Opt. Laser Technol. 126, 106125 (2020)

    Article  Google Scholar 

  9. Chen, Y., et al.: Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons. Opt. Express 21(1), 314–321 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Aziz, et al.: Spoof surface plasmon polariton beam splitters integrated with broadband rejection filtering function. J. Phys. D Appl. Phys. 54(33), 335105 (2021)

    Article  Google Scholar 

  11. Pathiranage, S., et al.: Tunable plasmonic resonator using conductivity modulated bragg reflectors. J. Phys. Condens. Matter 33(24), 245301 (2021)

    Article  ADS  Google Scholar 

  12. ElKhamisy, et al.: The effect of different surface plasmon polariton shapes on thin-film solar cell efficiency. J. Comput. Electron. 20, 1807–1814 (2021)

    Article  Google Scholar 

  13. Qin, et al.: Absorption characteristics of a metal-insulator-metal nanodisk for solar thermal applications. Opt. Express 28(10), 15731–15743 (2020)

    Article  ADS  Google Scholar 

  14. Felix-Rendon, U., et al.: Ultrasensitive nanoplasmonic biosensor based on interferometric excitation of multipolar plasmonic modes. Opt. Express 29(11), 17365–17374 (2021)

    Article  ADS  Google Scholar 

  15. Peng, Y., et al.: Optical fiber quantum biosensor based on surface plasmon polaritons for the label-free measurement of protein. Sens. Actuators B Chem. 316, 128097 (2020)

    Article  Google Scholar 

  16. Dobronosova, et al.: Low-damage reactive ion etching of nanoplasmonic waveguides with ultrathin noble metal films. Appl. Sci. 9(20), 4441 (2019)

    Article  Google Scholar 

  17. Lerer, et al.: Nonlinear interaction of terahertz waves with nanostructured graphene in resonance multilayer plasmon structures. J. Commun. Technol. Electron. 66(6), 656–664 (2021)

    Article  Google Scholar 

  18. Dzedolik, V.: Linear and nonlinear phenomena in a flow of surface plasmon-polaritons. Bull. Russ. Acad. Sci. Phys. 85(1), 1–7 (2021)

    Article  MathSciNet  Google Scholar 

  19. Tang, W., et al.: A compact component for multi-band rejection and frequency coding in the plasmonic circuit at microwave frequencies. Electronics 10(1), 4 (2020)

    Article  MathSciNet  Google Scholar 

  20. Han, H., et al.: Grating coupler design for vertical light coupling in silicon thin films on lithium niobate. Crystals 10(9), 850 (2020)

    Article  Google Scholar 

  21. Ruan, Z., et al.: Metal based grating coupler on a thin-film lithium niobate waveguide. Opt. Express 28(24), 35615–35621 (2020)

    Article  ADS  Google Scholar 

  22. Paliwal, et al.: Refractive index sensor using long-range surface plasmon resonance with prism coupler. Plasmonics 14(2), 375–381 (2019)

    Article  Google Scholar 

  23. Adams, et al.: An evaluation of the prism coupler for measuring the thickness and refractive index of dielectric films on silicon substrates. J. Electrochem. Soc. 126(9), 1539–1539 (2019)

    Article  MathSciNet  Google Scholar 

  24. Sun, et al.: Coupler for butt-coupling between edge-emitting lasers and inverted Si taper waveguide. Int. J. Mod. Phys. B 33(9), 1950074 (2019)

    Article  ADS  Google Scholar 

  25. Castilla, et al.: Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene. Nat. Commun. 11(1), 4872 (2020)

    Article  ADS  Google Scholar 

  26. Yang, F., et al.: Coupling light wave into the waveguide through H-shaped antenna. J. Guizhou Univ. (Natural Sciences). 31(04), 22–25 (2014)

    Google Scholar 

  27. Gao, Q., et al.: Design and characterization of high efficiency nanoantenna couplers with plasmonic integrated circuit. J. Lightwave Technol. 35(15), 3182–3188 (2017)

    Article  ADS  Google Scholar 

  28. Zaman, M.A., et al.: Plasmonic response of nano-C-apertures: polarization dependent field enhancement and circuit model. Plasmonics 18, 155–164 (2023)

    Article  Google Scholar 

  29. Barnes, L., et al.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  30. Deka, N., et al.: Methyl methacrylate-based copolymers: recent developments in the areas of transparent and stretchable active matrices. ACS Omega 7(42), 36929–36944 (2022)

    Article  Google Scholar 

  31. Jabbarzadeh, F., et al.: High performance dielectric loaded graphene plasmonic waveguide for refractive index sensing. Optics Communications. 479, 126419 (2021)

    Article  Google Scholar 

  32. Gao, F., et al.: Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chem. Eng. J. 407, 128001 (2021)

    Article  Google Scholar 

  33. Lee, T., et al.: Subwavelength light bending by metal slit structures. Opt. Express 13(24), 9652–9659 (2005)

    Article  ADS  Google Scholar 

  34. Briggs, R.M., et al.: Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett. 10(12), 4851–4857 (2010)

    Article  ADS  Google Scholar 

  35. Koška, P., et al.: Nonlinear nanophotonic and nanoplasmonic directional couplers: comparison of modelling methods. Opt. Quant. Electron. 47, 3201–3212 (2015)

    Article  Google Scholar 

  36. Jiang, et al.: Spin-orbit-engineered selective transport of photons in plasmonic nanocircuits with panda-patterned transporters. ACS Photonics 9(9), 3089–3093 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the start-up foundation for introducing talent of Nanjing University of Information Science and Technology (NUIST), the National Natural Science Foundation of China (Grant nos. 11605090), the Natural Science Foundation of the Jiangsu Province (BK20191396).

Author information

Authors and Affiliations

Authors

Contributions

XL designed the structures, performed the numerical simulations and wrote the manuscript. YM supervised the project, participated in analysis of the results and reviewed the manuscript. JL and YM participated in analysis of the results and reviewed the manuscript.

Corresponding author

Correspondence to Youqiao Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Li, J., Ma, Y. et al. Design of efficient coupling configuration with L-shaped plasmoic waveguide and nanoantenna. Opt Rev 30, 462–468 (2023). https://doi.org/10.1007/s10043-023-00827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00827-7

Keywords

Navigation