Skip to main content

Advertisement

Log in

Coupling Efficiency of Surface Plasmon Polaritons: Far- and Near-Field Analyses

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The excitation of surface plasmon polaritons (SPPs) through one-dimentional (1D) metallic (Au) grating on higher refractive index -GaP substrate is investigated. Such grating devices find potential applications in real world, only if the coupling efficiency (η) of a free-space transverse-magnetic plane-wave into a SPPs mode is maximum. A simple and robust technique is used to estimate the η, by simply measuring the transmission through the grating while varying slit width (a) but period (Λ) and the thickness (t) remain fixed. When the wave vector (k 0 ) of the incident light is matched to that of SPP, highest η is achieved. It is found that Λ/3 < a < Λ/2 yields a maximum η where the intermediate scattering couples more incident energy to SPPs. These gratings are designed in such a way that they support only the fundamental plasmonic mode yielding higher η. Scanning near-field optical measurements also confirm and corroborate the observations of far-field and near-field modeling (COMSOL multiphysics) results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raether H (1988) Surface-Plasmons on Smooth and Rough Surfaces and on Gratings. Springer

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Iqbal T (2015) Propagation length of surface plasmon polaritons excited by a 1D plasmonic grating. Curr Appl Phys 15:1445–1452

    Article  Google Scholar 

  4. Iqbal T, Afsheen S (2015) Plasmonic Band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics. doi:10.1007/s11468-015-0122-0

    Google Scholar 

  5. Iqbal T, Afsheen, S (2015) Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate. Curr Appl Phys

  6. Javaid M, Iqbal T (2015) Plasmonic band gap in 1D metallic nano structured devices. Plasmonics. doi:10.1007/s11468-015-0025-0

    Google Scholar 

  7. Joy NA, Rogers PH, Nandasiri MI, Thevuthasan S, Carpenter MA (2012) Plasmonic-based sensing using an array of Au − metal oxide thin films. Anal Chem 84:10437–10444

    Article  CAS  Google Scholar 

  8. Stewart ME et al (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  9. Vempati S, Iqbal T, Afsheen S (2015) Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J Appl Phys 118:043103–043106

    Article  Google Scholar 

  10. Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  11. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  12. Grande M et al (2011) Asymmetric plasmonic grating for optical sensing of thin layers of organic materials. Sensor Actuat B-Chem 160:1056–1062

    Article  CAS  Google Scholar 

  13. Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under- and over-milling. Plasmonics. doi:10.1007/s11468-015-0168-z

    Google Scholar 

  14. Worthing PT, Barnes WL (2001) Efficient coupling of surface plasmon polaritons to radiation using a bi-grating. Appl Phys Lett 79:3035–3037

    Article  CAS  Google Scholar 

  15. Moreland J, Adams A, Hansma PK (1982) Efficiency of light-emission from surface-plasmons. Phys Rev B 25:2297–2300

    Article  CAS  Google Scholar 

  16. Koev ST, Agrawal A, Lezec HJ, Aksyuk VA (2012) An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 7:269–277

    Article  CAS  Google Scholar 

  17. Celebrano M et al (2010) Efficient coupling of single photons to single plasmons. Opt Express 18:13829–13835

    Article  CAS  Google Scholar 

  18. Mehfuz R, Maqsood MW, Chau KJ (2010) Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering. Opt Express 18:18206–18216

    Article  CAS  Google Scholar 

  19. Baudrion A-L et al (2008) Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film. Opt Express 16:3420–3429

    Article  Google Scholar 

  20. Popov E et al (2005) Surface plasmon excitation on a single subwavelength hole in a metallic sheet. Appl Opt 44:2332–2337

    Article  Google Scholar 

  21. Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 81:1762–1764

    Article  CAS  Google Scholar 

  22. Lalanne P, Hugonin JP (2006) Interaction between optical nano-objects at metallo-dielectric interfaces. Nat Phys 2:551–556

    Article  CAS  Google Scholar 

  23. Lopez-Tejeira F et al (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3:324–328

    Article  CAS  Google Scholar 

  24. Lalanne P, Hugonin JP, Rodier JC (2005) Theory of surface plasmon generation at nanoslit apertures. Phys Rev Lett 95:263902

    Article  CAS  Google Scholar 

  25. Wen J et al (2011) Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas. Appl Phys Lett 98:101109

    Article  Google Scholar 

  26. Devaux E, Ebbesen TW, Weeber JC, Dereux A (2003) Launching and decoupling surface plasmons via micro-gratings. Appl Phys Lett 83:4936–4938

    Article  CAS  Google Scholar 

  27. Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21:1530–1533

    Article  CAS  Google Scholar 

  28. Radko IP et al (2008) Efficiency of local surface plasmon polariton excitation on ridges. Phys Rev B 78:115115

    Article  Google Scholar 

  29. Ditlbacher H, Krenn JR, Hohenau A, Leitner A, Aussenegg FR (2003) Efficiency of local light-plasmon coupling. Appl Phys Lett 83:3665–3667

    Article  CAS  Google Scholar 

  30. Mehfuz R, Chowdhury FA, Chau KJ (2012) Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy. Opt Express 20:10526–10537

    Article  CAS  Google Scholar 

  31. Zakharian AR, Moloney JV, Mansuripur M (2007) Surface plasmon polaritons on metallic surfaces. Opt Express 15:183–197

    Article  Google Scholar 

  32. C., M (2008) User Guide: RF Module

  33. Palik, ED (1985) Handbook of Optical Constants of Solids. Academic Press, Inc

  34. http://www.budgetsensors.com/contact_mode_afm_aluminium.html

  35. Zilio P, Sammito D, Zacco G, Romanato F (2010) Absorption profile modulation by means of 1D digital plasmonic gratings. Opt Express 18:19558–19565

    Article  CAS  Google Scholar 

  36. Romanato F et al (2011) Extraordinary optical transmission in one-dimensional gold gratings: near- and far-field analysis. Appl Opt 50:4529–4534

    Article  CAS  Google Scholar 

  37. Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403

    Article  Google Scholar 

  38. Xiao S et al (2010) Nearly zero transmission through periodically modulated ultrathin metal films. Appl Phys Lett 97:071116

    Article  Google Scholar 

  39. Rosengart E-H, Pockrand I (1977) Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt Lett 1:194–195

    Article  CAS  Google Scholar 

  40. Leveque G, Martin OJF (2006) Optimization of finite diffraction gratings for the excitation of surface plasmons. J Appl Phys 100:124301

    Article  Google Scholar 

  41. Sambles JR, Bradbery GW, Yang FZ (1991) Optical-excitation of surface-plasmons—an introduction. Contemp Phys 32:173–183

    Article  CAS  Google Scholar 

  42. Iqbal T, Afsheen S (2016) One dimensional plasmonic grating: high sensitive biosensor. Plasmonics. doi:10.1007/s11468-016-0223-4

    Google Scholar 

Download references

Acknowledgments

Dr Tahir Iqbal greatly acknowledge all concern quarters for their technical and financial help to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, T. Coupling Efficiency of Surface Plasmon Polaritons: Far- and Near-Field Analyses. Plasmonics 12, 215–221 (2017). https://doi.org/10.1007/s11468-016-0252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0252-z

Keywords

Navigation