Skip to main content
Log in

Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors

  • Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

It is promising to apply quantum-mechanically confined graphene systems in field-effect transistors. High stability, superior performance, and large-scale integration are the main challenges facing the practical application of graphene transistors. Our understandings of the adatom-graphene interaction combined with recent progress in the nanofabrication technology indicate that very stable and high-quality graphene nanostripes could be integrated in substrate-supported functionalized (hydrogenated or fluorinated) graphene using electron-beam lithography. We also propose that parallelizing a couple of graphene nanostripes in a transistor should be preferred for practical application, which is also very useful for transistors based on graphene nanoribbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306(5696): 666

    Article  ADS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6(3): 183

    Article  ADS  Google Scholar 

  3. D. C. Wei and Y. Q. Liu, Adv. Mater., 2010, 22(30): 3225

    Article  Google Scholar 

  4. A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, Phys. Rep., 2011, 503(2–3): 77

    Article  ADS  Google Scholar 

  5. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci., 2011, 56(8): 1178

    Article  Google Scholar 

  6. F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn, and K. Ensslin, J. Phys.: Condens. Matter, 2011, 23(24): 243201

    Article  ADS  Google Scholar 

  7. C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Front. Phys., 2011, 6(3): 271

    Google Scholar 

  8. W. D. Sheng, M. Korkusinski, A. D. Güclü, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Front. Phys., 2012, 7(3): 328

    Google Scholar 

  9. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Adv. Funct. Mater., 2009, 19(19): 3077

    Article  Google Scholar 

  10. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature, 2011, 474(7349): 64

    Article  ADS  Google Scholar 

  11. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Haley, Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, Nat. Photon., 2011, 5(7): 411

    Article  ADS  Google Scholar 

  12. F. Schwierz, Nat. Nanotechnol., 2010, 5(7): 487

    Article  ADS  Google Scholar 

  13. Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E, 2007, 40(2): 228

    Article  ADS  Google Scholar 

  14. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett., 2007, 98(20): 206805

    Article  ADS  Google Scholar 

  15. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett., 2008, 100(20): 206803

    Article  ADS  Google Scholar 

  16. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science, 2008, 319(5867): 1229

    Article  ADS  Google Scholar 

  17. L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat. Nanotechnol., 2010, 5(5): 321

    Article  ADS  Google Scholar 

  18. C. Tao, L. Jiao, O. V. Yazyev, Y. C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, and S. G. Louie, Nat. Phys., 2011, 7: 616

    Article  Google Scholar 

  19. L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herro, Nano Lett., 2009, 9(7): 2600

    Article  ADS  Google Scholar 

  20. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature, 2010, 466(7305): 470

    Article  ADS  Google Scholar 

  21. M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, and C. Berger, Nat. Nanotechnol., 2010, 5(10): 727

    Article  ADS  Google Scholar 

  22. X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Nano Lett., 2010, 10(7): 2454

    Article  ADS  Google Scholar 

  23. R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, Adv. Mater., 2010, 22(36): 4014

    Article  Google Scholar 

  24. P. Koskinen, S. Malola, and H. Häkkinen, Phys. Rev. B, 2009, 80(7): 073401

    Article  ADS  Google Scholar 

  25. X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science, 2009, 324: 76

    Google Scholar 

  26. P. Gallagher, K. Todd, and D. Goldhaber-Gordon, Phys. Rev. B, 2010, 81(11): 115409

    Article  ADS  Google Scholar 

  27. H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, ACS Nano, 2010, 4(12): 7221

    Article  Google Scholar 

  28. G. Xu, Jr. C. M. Torres, J. Tang, J. Bai, E. B. Song, Y. Huang, X. Duan, Y. Zhang, and K. L. Wang, Nano Lett., 2011, 11(3): 1082

    Article  ADS  Google Scholar 

  29. J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. Duan, Nat. Nanotechnol., 2010, 5(9): 655

    Article  ADS  Google Scholar 

  30. W. Y. Kim and K. S. Kim, Nat. Nanotechnol., 2008, 3(7): 408

    Article  Google Scholar 

  31. A. K. Singh and B. I. Yakobson, Nano Lett., 2009, 9(4): 1540

    Article  ADS  Google Scholar 

  32. A. K. Singh, E. S. Penev, and B. I. Yakobson, ACS Nano, 2010, 4(6): 3510

    Article  Google Scholar 

  33. E. Muñoz, A. K. Singh, M. A. Ribas, E. S. Penev, and B. I. Yakobson, Diamond Related Materials, 2010, 19(5–6): 368

    Article  ADS  Google Scholar 

  34. M. A. Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano Res., 2011, 4(1): 143

    Article  Google Scholar 

  35. L. F. Huang, X. H. Zheng, G. R. Zhang, L. L. Li, and Z. Zeng, J. Phys. Chem. C, 2011, 115(43): 21088

    Article  Google Scholar 

  36. A. A. Tseng, A. Notargiacomo, and T. P. Chen, J. Vac. Technol. B, 2005, 23(3): 877

    Article  Google Scholar 

  37. C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett., 2009, 103(24): 246804

    Article  ADS  Google Scholar 

  38. J. A. Robinson, M. Hollander, M. III Labella, K. A. Trumbull, R. Cavelero, and D. W. Snyder, Nano Lett., 2011, 11(9): 3875

    Article  ADS  Google Scholar 

  39. S. L. Wong, H. Huang, Y. Wang, L. Cao, D. Qi, I. Santoso, W. Chen, and A. T. S. Wee, ACS Nano, 2011, 5(9): 7662

    Article  Google Scholar 

  40. Y. Lin, F. Ding, and B. I. Yakobson, Phys. Rev. B, 2008, 78(4): 041402 (R)

    Article  ADS  Google Scholar 

  41. Z. M. Ao, A. D. Nernández-Nieves, F. M. Peeters, and S. Li, Appl. Phys. Lett., 2010, 97(23): 233109

    Article  ADS  Google Scholar 

  42. J. H. Lee and J. C. Grossman, Appl. Phys. Lett., 2010, 97(13): 133102

    Article  ADS  Google Scholar 

  43. P. Sessi, J. R. Guest, M. Bode, and N. P. Guisinger, Nano Lett., 2009, 9(12): 4343

    Article  ADS  Google Scholar 

  44. F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, Nano Lett., 2011, 11(9): 3912

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Lf., Zeng, Z. Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors. Front. Phys. 7, 324–327 (2012). https://doi.org/10.1007/s11467-011-0239-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-011-0239-3

Keywords

Navigation