Skip to main content
Log in

Patterning nanoroads and quantum dots on fluorinated graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  Google Scholar 

  3. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  4. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

    Article  CAS  Google Scholar 

  5. Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394–3398.

    Article  CAS  Google Scholar 

  6. Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  7. Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  CAS  Google Scholar 

  8. Chen, Z.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.

    Article  CAS  Google Scholar 

  9. Ci, L.; Xu, Z.; Wang, L.; Gao, W.; Ding, F.; Kelly, K.; Yakobson, B.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.

    Article  CAS  Google Scholar 

  10. Cançado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Medeiros-Ribeiro, G.; Enoki, T.; Kobayashi, Y.; Takai, K.; Fukui, K. I.; Dresselhaus, M. S.; Saito, R. et al. Anisotropy of the Raman spectra of nanographite ribbons. Phys. Rev. Lett. 2004, 93, 047403.

    Article  Google Scholar 

  11. Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  12. Ezawa, M. Metallic graphene nanodisks: Electronic and magnetic properties. Phys. Rev. B 2007, 76, 245415.

    Article  Google Scholar 

  13. Ezawa, M. Graphene nanoribbon and graphene nanodisk. Physica E 2008, 40, 1421–1423.

    Article  CAS  Google Scholar 

  14. Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 2006, 73, 045432.

    Article  Google Scholar 

  15. Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.

    Article  CAS  Google Scholar 

  16. Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z.; Smith, D. J.; Okuno, Y. et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.

    Article  CAS  Google Scholar 

  17. Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

    Article  CAS  Google Scholar 

  18. Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.

    Article  CAS  Google Scholar 

  19. Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

    Article  CAS  Google Scholar 

  20. Sluiter, M. H. F.; Kawazoe, Y. Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene. Phys. Rev. B 2003, 68, 085410.

    Article  Google Scholar 

  21. Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

    Article  Google Scholar 

  22. Singh, A. K.; Yakobson, B. I. Electronics and magnetism of patterned graphene nanoroads. Nano Lett. 2009, 9, 1540–1543.

    Article  CAS  Google Scholar 

  23. Singh, A. K.; Penev, E. S.; Yakobson, B. I. Vacancy clusters in graphane as quantum dots. ACS Nano 2010, 4, 3510-3514.

    Google Scholar 

  24. Balog, R.; Jorgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Laegsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315–319.

    Article  CAS  Google Scholar 

  25. Lin, Y.; Ding, F.; Yakobson, B. I. Hydrogen storage by spillover on graphene as a phase nucleation process. Phys. Rev. B 2008, 78, 041402.

    Article  Google Scholar 

  26. Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

    Article  CAS  Google Scholar 

  27. Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 4597–4602.

    Article  CAS  Google Scholar 

  28. Ebert, L. B.; Brauman, J. I.; Huggins, R. A. Carbon monofluoride. Evidence for a structure containing an infinite array of cyclohexane boats. J. Am. Chem. Soc. 1974, 96, 7841–7842.

    Article  CAS  Google Scholar 

  29. Kita, Y.; Watanabe, N.; Fujii, Y. Chemical composition and crystal structure of graphite fluoride. J. Am. Chem. Soc. 1979, 101, 3832–3841.

    Article  CAS  Google Scholar 

  30. Mallouk, T.; Bartlett, N. Reversible intercalation of graphite by fluorine: A new bifluoride, C12HF2, and graphite fluorides, CF (5 > x > 2). J. Chem. Soc., Chem. Commun. 1983, 103–105.

  31. Nakajima, T.; Watanabe, N.; Kameda, I.; Endo, M. Preparation and electrical conductivity of fluorine-graphite fiber intercalation compound. Carbon 1986, 24, 343–351.

    Article  CAS  Google Scholar 

  32. Panich, A. M. Nuclear magnetic resonance study of fluorine-graphite intercalation compounds and graphite fluorides. Synthetic Met. 1999, 100, 169–185.

    Article  CAS  Google Scholar 

  33. Touhara, H.; Kadono, K.; Fujii, Y.; Watanabe, N. On the structure of graphite fluoride. Z. Anorg. Allg. Chem. 1987, 544, 7–20.

    Article  CAS  Google Scholar 

  34. Watanabe, N. Characteristics and applications of graphite fluoride. Physica B & C 1981, 105, 17–21.

    Article  CAS  Google Scholar 

  35. Rüdorff, W.; Rüdorff, G. Zur Konstitution des Kohlenstoff-Monofluorids. Z. Anorg. Chem. 1947, 253, 281–296.

    Article  Google Scholar 

  36. Lagow, R. J.; Badachhape, R. B.; Wood, J. L.; Margrave, J. L. Some new synthetic approaches to graphite-fluorine chemistry. J. Chem. Soc., Dalton Trans. 1974, 1268–1273.

  37. Mahajan, V. K.; Badachhape, R. B.; Margrave, J. L. X-ray powder diffraction study of poly(carbon monofluoride), CF1.12. Inorg. Nucl. Chem. Lett. 1974, 10, 1103–1109.

    Article  CAS  Google Scholar 

  38. Nakajima, T. Synthesis, structure, and physicochemical properties of fluorine-graphite intercalation compounds. In Fluorine-Carbon and Fluoride-Carbon Materials: Chemistry, Physics, and Application, Nakajima, T., Ed.; Marcel Dekker: New York, 1995.

    Google Scholar 

  39. Dresselhaus, M. S.; Endo, M.; Issi, J. P. Physical properties of fluorine- and fluoride-graphite intercalation compounds. In Fluorine-Carbon and Fluoride-Carbon Materials: Chemistry, Physics, and Applications. Nakajima, T., Ed.; Marcel Dekker: New York, 1995.

    Google Scholar 

  40. Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64, 235406.

    Article  Google Scholar 

  41. Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 1998, 296, 188–194.

    Article  CAS  Google Scholar 

  42. Osuna, S.; Torrent-Sucarrat, M.; Sola, M.; Geerlings, P.; Ewels, C. P.; Lier, G. V. Reaction mechanisms for graphene and carbon nanotube fluorination. J. Phys. Chem. C 2010, 114, 3340–3345.

    Article  CAS  Google Scholar 

  43. Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.

    Article  CAS  Google Scholar 

  44. Sun, Y. P.; Fu, K.; Lin, Y.; Huang, W. Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 2002, 35, 1096–1104.

    Article  CAS  Google Scholar 

  45. Kudin, K. N.; Bettinger, H. F.; Scuseria, G. E. Fluorinated single-wall carbon nanotubes. Phys. Rev. B 2001, 63, 045413.

    Article  Google Scholar 

  46. Cheng, S. H.; Zou, K.; Okino, F.; Gutierrez, H. R.; Gupta, A.; Shen, N.; Eklund, P. C.; Sofo, J. O.; Zhu, J. Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 2010, 81, 205435.

    Article  Google Scholar 

  47. Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001–3005.

    Article  CAS  Google Scholar 

  48. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  49. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–15979.

    Article  Google Scholar 

  51. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  52. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  53. Köhler, C.; Frauenheim, T. Molecular dynamics simulations of CFx (x = 2, 3) molecules at Si3N4 and SiO2 surfaces. Surf. Sci. 2006, 600, 453–460.

    Article  Google Scholar 

  54. Aradi, B.; Hourahine, B.; Frauenheim, Th. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 2007, 111, 5678–5684.

    Article  CAS  Google Scholar 

  55. Charlier, J. C.; Gonze, X.; Michenaud, J. P. First-principles study of graphite monofluoride (CF)n. Phys. Rev. B 1993, 47, 16162–16168.

    Article  CAS  Google Scholar 

  56. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330.

    Article  CAS  Google Scholar 

  57. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev. 2008, 37, 308–319.

    Article  Google Scholar 

  58. Lemal, D. M. Perspective on fluorocarbon chemistry. J. Org. Chem. 2004, 69, 1–11.

    Article  CAS  Google Scholar 

  59. Artyukhov, V. I.; Chernozatonskii, L. A. Structure and layer interaction in carbon monofluoride and graphane: A comparative computational study. J. Phys. Chem. A 2010, 114, 5389–5396.

    Article  CAS  Google Scholar 

  60. Muñoz, E.; Singh, A. K.; Ribas, M. A.; Penev, E. S.; Yakobson, B. I. The ultimate diamond slab: GraphAne versus graphEne. Diam. Relat. Mat. 2010, 19, 368–373.

    Article  Google Scholar 

  61. Dewar, M. J. S. Dougherty, R. C. The PMO Theory of Organic Chemistry; Plenum: New York, 1975.

    Google Scholar 

  62. Kudin, K. N. Zigzag graphene nanoribbons with saturated edges. ACS Nano 2008, 2, 516–522.

    Article  CAS  Google Scholar 

  63. Chernozatonskii, L. A.; Sorokin, P. B. Nanoengineering structures on graphene with adsorbed hydrogen “lines”. J. Phys. Chem. C 2010, 114, 3225–3229.

    Article  CAS  Google Scholar 

  64. Trauzettel, B.; Bulaev, D. V.; Loss, D.; Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 2007, 3, 192–196.

    Article  CAS  Google Scholar 

  65. Recher, P.; Trauzettel, B. Quantum dots and spin qubits in graphene. Nanotechnology 2010, 21, 302001.

    Article  Google Scholar 

  66. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.

    Article  CAS  Google Scholar 

  67. Matulis, A.; Peeters, F. M. Quasibound states of quantum dots in single and bilayer graphene. Phys. Rev. B 2008, 77, 115423.

    Article  Google Scholar 

  68. Lebegue, S.; Klintenberg, M.; Eriksson, O.; Katsnelson, M. I. Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B 2009, 79, 245117.

    Article  Google Scholar 

  69. Ajayan, P. M.; Yakobson, B. I. Material science: Oxygen breaks into carbon world. Nature 2006, 441, 818–819.

    Article  CAS  Google Scholar 

  70. Flores, M. Z. S.; Autreto, P. A. S.; Legoas, S. B.; Galvao, D. S. Graphene to graphane: A theoretical study. Nanotechnology 2009, 20, 465704.

    Article  CAS  Google Scholar 

  71. Nair, R. R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. et al. Fluorographene: A two-dimensional counterpart of teflon. Small 2010, in press, DOI: 10.1002/smll.201001555.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Yakobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribas, M.A., Singh, A.K., Sorokin, P.B. et al. Patterning nanoroads and quantum dots on fluorinated graphene. Nano Res. 4, 143–152 (2011). https://doi.org/10.1007/s12274-010-0084-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0084-7

Keywords

Navigation