Skip to main content
Log in

Banana fiber-reinforced biodegradable soy protein composites

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

Banana fiber, a waste product of banana cultivation, has been used to prepare banana fiber reinforced soy protein composites. Alkali modified banana fibers were characterized in terms of density, denier and crystallinity index. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were also performed on the fibers. Soy protein composites were prepared by incorporating different volume fractions of alkali-treated and untreated fibers into soy protein isolate (SPI) with different amounts of glycerol (25%–50%) as plasticizer. Composites thus prepared were characterized in terms of mechanical properties, SEM and water resistance. The results indicate that at 0.3 volume fraction, tensile strength and modulus of alkali treated fiber reinforced soy protein composites increased to 82% and 963%, respectively, compared to soy protein film without fibers. Water resistance of the composites increased significantly with the addition of glutaraldehyde which acts as cross-linking agent. Biodegradability of the composites has also been tested in the contaminated environment and the composites were found to be 100% biodegradable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill S. Cars that grow on trees. New Scientists, 1997, 36: 2067–2068

    Google Scholar 

  2. Wang B, Sain M, Oksman K. Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater, 2007, 14: 89–103

    Article  Google Scholar 

  3. Paetau I, Chen C Z, Jane J. Biodegradable plastic made from soybean products. II. Effects of cross-linking and cellulose incorporation on mechanical properties and water absorption. J Environ Polym Degrad, 1994, 2: 211–217

    Article  CAS  Google Scholar 

  4. Oksman K, Clemmons C. Mechanical properties and morphology of impact modified polypropylene-wood flour composites. J Appl Polym Sci, 1998, 67: 1503–1513

    Article  CAS  Google Scholar 

  5. Maurizio A, Luca C, Ramiro D, Bonaventura F, Ezio M, Annamaria M. Broom fibers as reinforcing materials for polypropylene-based composites. J Appl Polym Sci, 1998, 68: 1077–1089

    Article  Google Scholar 

  6. Kumar R B, Amma M L G, Thomas S. Short sisal fiber reinforced styrene-butadiene rubber composites. J Appl Polym Sci, 1995, 58: 597–612

    Article  CAS  Google Scholar 

  7. Chen X, Guo Q, Mi Y. Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. J Appl Polym Sci, 1998, 69: 1891–1899

    Article  CAS  Google Scholar 

  8. Pothen L A, Thomas S, Neelakandan N R. Short banana fiber reinforced polyester composites: Mechanical, failure and aging characteristics. J Reinforced Plast Compos, 1997, 16: 744–765

    Google Scholar 

  9. Das S, Saha A K, Choudhary P K, Basak R K, Mitra B C, Lang S. Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J Appl Polym Sci, 2000, 76: 1652–1661

    Article  CAS  Google Scholar 

  10. Pickering K L, Li Y, Farell R L, Lay M. Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment J, Biobased Materials and Bioenergy, 2007, 1: 109–117

    Google Scholar 

  11. Kumar R, Liu D, Zhang L. Advances in proteinous biomaterials. J Biobased Materials and Bioenergy, 2008, 2: 1–24

    Article  CAS  Google Scholar 

  12. Kumar R, Mishra S, Choudhary V, Varma I K. Enzymatically modified soy protein Part2-adhesion behaviour. J Adhesion Sc Technol, 2004, 18: 261–273

    Article  CAS  Google Scholar 

  13. Sain M M, Kokta B V J. Toughened thermoplastic composite. I. Cross-linkable phenol formaldehyde and epoxy resinscoated cellulosic-filled polypropylene composites. J Appl Polym Sci, 1993, 48: 2181–2196

    Article  CAS  Google Scholar 

  14. Mwaikambo L Y, Ansell M P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci, 2002, 84: 2222–2234

    Article  CAS  Google Scholar 

  15. Mohanty A K, Khan M A, Sahoo S, Hinrichsen G. Effect of chemical modification on the performance of biodegradable jute yarn-Biopol® composites, J Mat Sci. 2000, 35: 2589–2595

    Article  CAS  Google Scholar 

  16. Otaigbe J U, Goel H, Babcock T, Jane J. Processability and properties of biodegradable plastics made from agricultural biopolymers. J Elastomers Plast, 1999, 31: 56–71

    CAS  Google Scholar 

  17. Paetau I, Chen C Z, Jane J L. Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical properties and water absorption. Ind Eng Chem Res, 1994, 33: 1821–1827

    Article  CAS  Google Scholar 

  18. Liang F, Wang Y, Sun S. Curing process and thermal mechanical properties of protein-based polymers. J Polym Eng, 1999, 19: 383–393

    CAS  Google Scholar 

  19. Lodha P, Netravali A N. Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber. J Mat Sci, 2002, 37: 3657–3665

    Article  CAS  Google Scholar 

  20. Liu W, Mohanty A K, Askeland P, Drzal L T, Misra M. Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer, 2004, 45: 7589–7596

    Article  CAS  Google Scholar 

  21. Madsen B, Lilholt H. Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Compos Sci Technol, 2003, 63: 1265–1272

    Article  CAS  Google Scholar 

  22. Mwaikambo L Y, Ansell M P. Hemp fibre reinforced cashew nut shell liquid composites. Compos Sci Technol, 2003, 63: 1297–1305

    Article  CAS  Google Scholar 

  23. Segal L, Creely J J, Martin A E, Cornad C M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J, 1959, 29: 786–794

    Article  CAS  Google Scholar 

  24. Thygesen A, Oddershede J, Lilholt H, Thomsen A B, Stahl K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 2005, 12: 563–573

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

About this article

Cite this article

Kumar, R., Choudhary, V., Mishra, S. et al. Banana fiber-reinforced biodegradable soy protein composites. Front. Chem. China 3, 243–250 (2008). https://doi.org/10.1007/s11458-008-0069-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-008-0069-1

Keywords

Navigation