Skip to main content
Log in

Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Rockburst is a frequent challenge during tunnel and other underground construction and is an extreme rock damage phenomenon. Therefore, it is very crucial to accurately estimate the damage potential of rockburst events. Microseismic (MS) monitoring can be used to obtain the relevant MS parameters for short-term rockburst prediction in real time that reflect the evolution of short-term rockburst. In this study, short-term rockburst potential data containing 7 MS parameters (cumulative number of events, cumulative released energy, cumulative apparent volume, event rate, energy rate, apparent volume rate, and incubation time) and 91 rockburst events (none rockburst, low rockburst, moderate rockburst, and high rockburst) were collected from the Jinping Hydropower Station diversion tunnel project in China. The objective of this paper is to propose an ensemble learning (EML) model based on the LévyFlight-Jaya optimization (LFJaya) and fivefold cross-validation (CV) method to achieve an accurate prediction of short-term rockburst damage potential using MS information. The EML consists of light gradient boosting machine (LGBM), extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and logistic regression (LR), with seven MS parameters as the EML inputs and four rockburst levels as target variables. 70% and 30% of the cases were randomly selected for training and testing, respectively. Five metrics (accuracy, kappa, precision, recall, and F1-score) and nonparametric statistical tests were used to evaluate the performance of the model. It can be observed from the results of this study that the proposed EML has a higher test accuracy (89.29%) than the multiple base classifiers used in the study. With the use of the ensemble model, the decision boundary becomes more precise and overfitting is significantly improved. Additionally, the internal decision-making process of EML was elucidated through an analysis of the model parameters using SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). It was discovered that the cumulative released energy, the number of MS events, and the cumulative apparent volume (which reflects the number and strength of rock fractures) exert a significant influence on the prediction of short-term rockburst potential. Finally, developed graphical user interface (GUI) accurately predicted six instances of rockburst in the deeply buried tunnel of Jinping. Verification results indicated that the proposed EML exhibits strong generalization and can effectively utilize MS information to achieve precise short-term rockburst potential predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Adoko AC, Gokceoglu C, Wu L, Zuo QJ (2013) Knowledge-based and data-driven fuzzy modeling for rockburst prediction. Int J Rock Mech Min Sci 61:86–95. https://doi.org/10.1016/j.ijrmms.2013.02.010

    Article  Google Scholar 

  2. Afraei S, Shahriar K, Madani SH (2019) Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 1: literature review and data preprocessing procedure. Tunn Undergr Space Technol 83:324–353. https://doi.org/10.1016/j.tust.2018.09.022

    Article  Google Scholar 

  3. Alcott JM, Kaiser PK, Simser BP (1999) Use of microseismic source parameters for rockburst hazard assessment. Seism Caused Mines Fluid Inject Reserv Oil Extr. https://doi.org/10.1007/978-3-0348-8804-2_4

    Article  Google Scholar 

  4. Allen M, Poggiali D, Whitaker K, Marshall TR, Kievit RA (2019) Raincloud plots: a multi-platform tool for robust data visualization. Wellcome Open Res. https://doi.org/10.12688/wellcomeopenres.15191.1

    Article  Google Scholar 

  5. Askaripour M, Saeidi A, Rouleau A, Mercier-Langevin P (2022) Rockburst in underground excavations: a review of mechanism, classification, and prediction methods. Undergr Space. https://doi.org/10.1016/j.undsp.2021.11.008

    Article  Google Scholar 

  6. Blake W, Hedley DG (2003) Rockbursts: case studies from North American hard-rock mines. SME.

  7. Brady BT, Leighton F (1977) Seismicity anomaly prior to a moderate rock burst: a case study. Int J Rock Mech Min Sci Geomech Abstr 14(3):127–132. https://doi.org/10.1016/0148-9062(77)90003-1

    Article  Google Scholar 

  8. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  9. Cai M (2013) Principles of rock support in burst-prone ground. Tunn Undergr Space Technol 36:46–56. https://doi.org/10.1016/j.tust.2013.02.003

    Article  Google Scholar 

  10. Cao A, Liu Y, Yang X, Li S, Liu Y (2022) FDNet: Knowledge and data fusion-driven deep neural network for coal burst prediction. Sensors 22(8):3088. https://doi.org/10.3390/s22083088

    Article  Google Scholar 

  11. Chen K, Chen H, Zhou C, Huang Y, Qi X, Shen R, Liu F, Zuo M, Zou X, Wang J (2020) Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res 171:115454. https://doi.org/10.1016/j.watres.2019.115454

    Article  Google Scholar 

  12. Chen BR, Feng XT, Li QP, Luo RZ, Li S (2015) Rock burst intensity classification based on the radiated energy with damage intensity at Jinping II hydropower station, China. Rock Mech Rock Eng 48:289–303. https://doi.org/10.1007/s00603-013-0524-2

    Article  Google Scholar 

  13. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, https://doi.org/10.1145/2939672.2939785

  14. Chen C, Zhang Q, Ma Q, Yu B (2019) LightGBM-PPI: Predicting protein-protein interactions through LightGBM with multi-information fusion. Chemom Intell Lab Syst 191:54–64. https://doi.org/10.1016/j.chemolab.2019.06.003

    Article  Google Scholar 

  15. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30. https://doi.org/10.5555/1248547.1248548

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong LJ, Li XB, Peng K (2013) Prediction of rockburst classification using random forest. Trans Nonferr Metals Soc China 23(2):472–477. https://doi.org/10.1016/S1003-6326(13)62487-5

    Article  Google Scholar 

  17. Fajklewicz Z (1983) Rock-burst forecasting and genetic research in coal-mines by microgravity method. Geophys Prospect 31(5):748–765. https://doi.org/10.1111/j.1365-2478.1983.tb01083.x

    Article  Google Scholar 

  18. Feng X, Chen B, Li S, Zhang C, Xiao Y, Feng G, Zhou H, Qiu S, Zhao Z, Yu Y (2012) Studies on the evolution process of rockbursts in deep tunnels. J Rock Mech Geotech Eng 4(4):289–295. https://doi.org/10.3724/SP.J.1235.2012.00289

    Article  Google Scholar 

  19. Feng XT, Chen BR, Zhang CQ, Li SJ, Wu SY (2013) Mechanism, warning and dynamic control of rockburst development process. Science Press, Beijing

    Google Scholar 

  20. Feng GL, Feng XT, Chen BR, Xiao YX, Yu Y (2015) A microseismic method for dynamic warning of rockburst development processes in tunnels. Rock Mech Rock Eng 48:2061–2076. https://doi.org/10.1007/s00603-014-0689-3

    Article  Google Scholar 

  21. Feng XT, Liu J, Chen B, Xiao Y, Feng G, Zhang F (2017) Monitoring, warning, and control of rockburst in deep metal mines. Engineering 3(4):538–545. https://doi.org/10.1016/J.ENG.2017.04.013

    Article  Google Scholar 

  22. Feng G, Xia G, Chen B, Xiao Y, Zhou R (2019) A method for rockburst prediction in the deep tunnels of hydropower stations based on the monitored microseismicity and an optimized probabilistic neural network model. Sustainability 11(11):3212. https://doi.org/10.3390/su11113212

    Article  Google Scholar 

  23. Futagami K, Fukazawa Y, Kapoor N, Kito T (2021) Pairwise acquisition prediction with SHAP value interpretation. J Financ Data Sci 7:22–44. https://doi.org/10.1016/j.jfds.2021.02.001

    Article  Google Scholar 

  24. Ghosh G, Sivakumar C (2018) Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: a case study in an Indian mine. J Appl Geophys 150:21–39. https://doi.org/10.1016/j.jappgeo.2018.01.004

    Article  Google Scholar 

  25. Glazer S (2018) Mine seismology: data analysis and interpretation. Springer, Berlin. https://doi.org/10.1007/978-3-319-32612-2

    Book  Google Scholar 

  26. Guo D, Chen H, Tang L, Chen Z, Samui P (2021) Assessment of rockburst risk using multivariate adaptive regression splines and deep forest model. Acta Geotechnica. https://doi.org/10.1007/s11440-021-01299-2

    Article  Google Scholar 

  27. Guo J, Guo J, Zhang Q, Huang M (2022) Research on rockburst classification prediction based on BP-SVM model. IEEE Access 10:50427–50447. https://doi.org/10.1109/ACCESS.2022.3173059

    Article  Google Scholar 

  28. Heal D (2010) Observations and analysis of incidences of rockburst damage in underground mines.

  29. Iacca G, dos Santos Junior VC, de Melo VV (2021) An improved Jaya optimization algorithm with Lévy flight. Expert Syst Appl 165:113902. https://doi.org/10.1016/j.eswa.2020.113902

    Article  Google Scholar 

  30. Ingle KK, Jatoth RK (2020) An efficient JAYA algorithm with lévy flight for non-linear channel equalization. Expert Syst Appl 145:112970. https://doi.org/10.1016/j.eswa.2019.112970

    Article  Google Scholar 

  31. Jin A, Basnet PMS, Mahtab S (2022) Microseismicity-based short-term rockburst prediction using non-linear support vector machine. Acta Geophys 70(4):1717–1736. https://doi.org/10.1007/s11600-022-00817-4

    Article  Google Scholar 

  32. Kadkhodaei MH, Ghasemi E, Sari M (2022) Stochastic assessment of rockburst potential in underground spaces using Monte Carlo simulation. Environ Earth Sci 81(18):447. https://doi.org/10.1007/s12665-022-10561-z

    Article  Google Scholar 

  33. Kaiser PK, Cai M (2012) Design of rock support system under rockburst condition. J Rock Mech Geotech Eng 4(3):215–227. https://doi.org/10.3724/SP.J.1235.2012.00215

    Article  Google Scholar 

  34. Ke B, Khandelwal M, Asteris PG, Skentou AD, Mamou A, Armaghani DJ (2021) Rock-burst occurrence prediction based on optimized Naïve Bayes models. IEEE Access 9:91347–91360. https://doi.org/10.1109/ACCESS.2021.3089205

    Article  Google Scholar 

  35. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Lightgbm: A highly efficient gradient boosting decision tree. Adv Neural Inform Process Syst 30:3146–3154. https://doi.org/10.5555/3294996.3295074

    Article  Google Scholar 

  36. Kim Y, Kim Y (2022) Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models. Sustain Cities Soc 79:103677. https://doi.org/10.1016/j.scs.2022.103677

    Article  Google Scholar 

  37. Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M (2002) Logistic regression. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4419-1742-3

    Book  Google Scholar 

  38. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics. https://doi.org/10.2307/2529310

    Article  MATH  Google Scholar 

  39. Li N, Feng X, Jimenez R (2017) Predicting rock burst hazard with incomplete data using Bayesian networks. Tunn Undergr Space Technol 61:61–70. https://doi.org/10.1016/j.tust.2016.09.010

    Article  Google Scholar 

  40. Li TZ, Li YX, Yang XL (2017) Rock burst prediction based on genetic algorithms and extreme learning machine. J Central South Univ 24(9):2105–2113. https://doi.org/10.1007/s11771-017-3619-1

    Article  Google Scholar 

  41. Li D, Liu Z, Xiao P, Zhou J, Armaghani DJ (2022) Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization. Undergr Space 7(5):833–846. https://doi.org/10.1016/j.undsp.2021.12.009

    Article  Google Scholar 

  42. Li X, Mao H, Li B, Xu N (2021) Dynamic early warning of rockburst using microseismic multi-parameters based on Bayesian network. Eng Sci Technol Int J 24(3):715–727. https://doi.org/10.1016/j.jestch.2020.10.002

    Article  Google Scholar 

  43. Li N, Zare Naghadehi M, Jimenez R (2020) Evaluating short-term rock burst damage in underground mines using a systems approach. Int J Min Reclam Environ 34(8):531–561. https://doi.org/10.1080/17480930.2019.1657654

    Article  Google Scholar 

  44. Liang W, Sari A, Zhao G, McKinnon SD, Wu H (2020) Short-term rockburst risk prediction using ensemble learning methods. Nat Hazards 104:1923–1946. https://doi.org/10.1007/s11069-020-04255-7

    Article  Google Scholar 

  45. Liang W, Sari YA, Zhao G, McKinnon SD, Wu H (2021) Probability estimates of short-term rockburst risk with ensemble classifiers. Rock Mech Rock Eng 54:1799–1814. https://doi.org/10.1007/s00603-021-02369-3

    Article  Google Scholar 

  46. Lin Y, Zhou K, Li J (2018) Application of cloud model in rock burst prediction and performance comparison with three machine learning algorithms. IEEE Access 6:30958–30968. https://doi.org/10.1109/ACCESS.2018.2839754

    Article  Google Scholar 

  47. Liu JP, Feng XT, Li YH, Sheng Y (2013) Studies on temporal and spatial variation of microseismic activities in a deep metal mine. Int J Rock Mech Min Sci 60:171–179. https://doi.org/10.1016/j.ijrmms.2012.12.022

    Article  Google Scholar 

  48. Liu Y, Hou S (2020) Rockburst prediction based on particle swarm optimization and machine learning algorithm. In: Information Technology in Geo-Engineering: Proceedings of the 3rd International Conference (ICITG), Guimarães, Portugal 3 pp 292–303. https://doi.org/10.1007/978-3-030-32029-4_25

  49. Liu GF, Jiang Q, Feng GL, Chen DF, Chen BR, Zhao ZN (2021) Microseismicity-based method for the dynamic estimation of the potential rockburst scale during tunnel excavation. Bull Eng Geol Env 80:3605–3628. https://doi.org/10.1007/s10064-021-02173-x

    Article  Google Scholar 

  50. Liu Z, Shao J, Xu W, Meng Y (2013) Prediction of rock burst classification using the technique of cloud models with attribution weight. Nat Hazards 68:549–568. https://doi.org/10.1007/s11069-013-0635-9

    Article  Google Scholar 

  51. Ma T, Lin D, Tang L, Li L, Tang CA, Yadav KP, Jin W (2022) Characteristics of rockburst and early warning of microseismic monitoring at qinling water tunnel. Geomat Nat Haz Risk 13(1):1366–1394. https://doi.org/10.1080/19475705.2022.2073830

    Article  Google Scholar 

  52. Ma T, Tang C, Tang L, Zhang W, Wang L (2015) Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunn Undergr Space Technol 49:345–368. https://doi.org/10.1016/j.tust.2015.04.016

    Article  Google Scholar 

  53. Ma X, Westman E, Slaker B, Thibodeau D, Counter D (2018) The b-value evolution of mining-induced seismicity and mainshock occurrences at hard-rock mines. Int J Rock Mech Min Sci 104:64–70. https://doi.org/10.1016/j.ijrmms.2018.02.003

    Article  Google Scholar 

  54. Mammone A, Turchi M, Cristianini N (2009) Support vector machines. Wiley Interdiscip Rev Comput Stat 1(3):283–289. https://doi.org/10.1002/wics.49

    Article  MathSciNet  Google Scholar 

  55. Mark C (2016) Coal bursts in the deep longwall mines of the United States. Int J Coal Sci Technol 3(1):1–9. https://doi.org/10.1007/s40789-016-0102-9

    Article  MathSciNet  Google Scholar 

  56. Mendecki A, Gibowicz S, Lasocki S (1997) Keynote lecture: principles of monitoring seismic rockmass response to mining. In: Gibowiez SJ (ed) Proceedings of the fourth international symposium on rockbursts and seismieity in mines pp 69–80

  57. Myrvang A, Grimstad E (1983) Rockburst problems in Norwegian highway tunnels—recent case histories. Rockbursts: prediction and control. Symposium pp 133–139

  58. Naji AM, Emad MZ, Rehman H, Yoo H (2019) Geological and geomechanical heterogeneity in deep hydropower tunnels: a rock burst failure case study. Tunn Undergr Space Technol 84:507–521. https://doi.org/10.1016/j.tust.2018.11.009

    Article  Google Scholar 

  59. Peng J, Zou K, Zhou M, Teng Y, Zhu X, Zhang F, Xu J (2021) An explainable artificial intelligence framework for the deterioration risk prediction of hepatitis patients. J Med Syst 45:1–9. https://doi.org/10.1007/s10916-021-01736-5

    Article  Google Scholar 

  60. Polikar R (2012) Ensemble machine learning: Methods and applications. Springer, New York, pp 1–34. https://doi.org/10.1007/978-1-4419-9326-7_1

    Book  Google Scholar 

  61. Pu Y, Apel DB, Liu V, Mitri H (2019) Machine learning methods for rockburst prediction-state-of-the-art review. Int J Min Sci Technol 29(4):565–570. https://doi.org/10.1016/j.ijmst.2019.06.009

    Article  Google Scholar 

  62. Pu Y, Apel DB, Wang C, Wilson B (2018) Evaluation of burst liability in kimberlite using support vector machine. Acta Geophys 66:973–982. https://doi.org/10.1007/s11600-018-0178-2

    Article  Google Scholar 

  63. Pu Y, Apel DB, Wei C (2019) Applying machine learning approaches to evaluating rockburst liability: a comparation of generative and discriminative models. Pure Appl Geophys 176(10):4503–4517. https://doi.org/10.1007/s00024-019-02197-1

    Article  Google Scholar 

  64. Qiu L, Liu Z, Wang E, He X, Feng J, Li B (2020) Early-warning of rock burst in coal mine by low-frequency electromagnetic radiation. Eng Geol 279:105755. https://doi.org/10.1016/j.enggeo.2020.105755

    Article  Google Scholar 

  65. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  66. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39. https://doi.org/10.1007/s10462-009-9124-7

    Article  Google Scholar 

  67. Sagi O, Rokach L (2018) Ensemble learning: a survey. Wiley Interdiscip Rev Data Min Knowl Discov 8(4):e1249. https://doi.org/10.1002/widm.1249

    Article  Google Scholar 

  68. Sauer J, Mariani VC, dos Santos CL, Ribeiro MHDM, Rampazzo M (2021) Extreme gradient boosting model based on improved Jaya optimizer applied to forecasting energy consumption in residential buildings. Evolving Syst. https://doi.org/10.1007/s12530-021-09404-2

    Article  Google Scholar 

  69. Shapley LS (1953) 17. A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games (AM-28), volume II. Princeton University Press, Princeton, pp 307–318. https://doi.org/10.1515/9781400881970-018

    Chapter  Google Scholar 

  70. Shirani Faradonbeh R, Taheri A (2019) Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques. Eng Comput 35(2):659–675. https://doi.org/10.1007/s00366-018-0624-4

    Article  Google Scholar 

  71. Shukla R, Khandelwal M, Kankar P (2021) Prediction and assessment of rock burst using various meta-heuristic approaches. Min Metall Explor 38:1375–1381. https://doi.org/10.1007/s42461-021-00415-w

    Article  Google Scholar 

  72. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manage 45(4):427–437. https://doi.org/10.1016/j.ipm.2009.03.002

    Article  Google Scholar 

  73. Sun L, Hu N, Ye Y, Tan W, Wu M, Wang X, Huang Z (2022) Ensemble stacking rockburst prediction model based on Yeo-Johnson, K-means SMOTE, and optimal rockburst feature dimension determination. Sci Rep 12(1):15352. https://doi.org/10.1038/s41598-022-19669-5

    Article  Google Scholar 

  74. Sun Y, Li G, Zhang J, Huang J (2021) Rockburst intensity evaluation by a novel systematic and evolved approach: machine learning booster and application. Bull Eng Geol Env 80:8385–8395. https://doi.org/10.1007/s10064-021-02460-7

    Article  Google Scholar 

  75. Tang LZ, Xia K (2010) Seismological method for prediction of areal rockbursts in deep mine with seismic source mechanism and unstable failure theory. J Cent South Univ Technol 17(5):947–953. https://doi.org/10.1007/s11771-010-0582-5

    Article  Google Scholar 

  76. Vapnik VN (1995) The nature of statistical learning. Theory. https://doi.org/10.1007/978-1-4757-3264-1

    Article  MATH  Google Scholar 

  77. Wang J, Liu P, Ma L, He M, Xiong H (2021) A rockburst proneness evaluation method based on multidimensional cloud model improved by control variable method and rockburst database. Lithosphere. https://doi.org/10.2113/2022/5354402

    Article  Google Scholar 

  78. Wang J, Zhang J (2010) Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project. J Rock Mech Geotech Eng 2(3):193–208. https://doi.org/10.3724/SP.J.1235.2010.00193

    Article  Google Scholar 

  79. Wang SM, Zhou J, Li CQ, Armaghani DJ, Li XB, Mitri HS (2021) Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques. J Central South Univ 28(2):527–542

    Article  Google Scholar 

  80. Wang M, Zhu ZM, Liu JH (2012) The photoelastic analysis of stress intensity factor for cracks around a tunnel. Appl Mech Mater 142:197–200. https://doi.org/10.4028/www.scientific.net/AMM.142.197

    Article  Google Scholar 

  81. Woźniak M, Grana M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inform Fusion 16:3–17. https://doi.org/10.1016/j.inffus.2013.04.006

    Article  Google Scholar 

  82. Wu S, Wu Z, Zhang C (2019) Rock burst prediction probability model based on case analysis. Tunn Undergr Space Technol 93:103069. https://doi.org/10.1016/j.tust.2019.103069

    Article  Google Scholar 

  83. Xie X, Jiang W, Guo J (2021) Research on rockburst prediction classification based on GA-XGB model. IEEE Access 9:83993–84020. https://doi.org/10.1109/ACCESS.2021.3085745

    Article  Google Scholar 

  84. Xu N, Li T, Dai F, Zhang R, Tang C, Tang L (2016) Microseismic monitoring of strainburst activities in deep tunnels at the Jinping II hydropower station, China. Rock Mech Rock Eng 49:981–1000. https://doi.org/10.1007/s00603-015-0784-0

    Article  Google Scholar 

  85. Xu G, Li K, Li M, Qin Q, Yue R (2022) Rockburst intensity level prediction method based on FA-SSA-PNN model. Energies 15(14):5016. https://doi.org/10.3390/en15145016

    Article  Google Scholar 

  86. Xue Y, Bai C, Qiu D, Kong F, Li Z (2020) Predicting rockburst with database using particle swarm optimization and extreme learning machine. Tunn Undergr Space Technol 98:103287. https://doi.org/10.1016/j.tust.2020.103287

    Article  Google Scholar 

  87. Xue Y, Li G, Li Z, Wang P, Gong H, Kong F (2022) Intelligent prediction of rockburst based on Copula-MC oversampling architecture. Bull Eng Geol Env 81(5):209. https://doi.org/10.1007/s10064-022-02659-2

    Article  Google Scholar 

  88. Xue R, Liang Z, Xu N, Dong L (2020) Rockburst prediction and stability analysis of the access tunnel in the main powerhouse of a hydropower station based on microseismic monitoring. Int J Rock Mech Min Sci 126:104174. https://doi.org/10.1016/j.ijrmms.2019.104174

    Article  Google Scholar 

  89. Yin X, Liu Q, Huang X, Pan Y (2021) Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application. Tunn Undergr Space Technol 117:104133. https://doi.org/10.1016/j.tust.2021.104133

    Article  Google Scholar 

  90. Yin X, Liu Q, Pan Y, Huang X, Wu J, Wang X (2021) Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: comparison of eight single and ensemble models. Nat Resour Res 30:1795–1815. https://doi.org/10.1007/s11053-020-09787-0

    Article  Google Scholar 

  91. Zhang M (2022) Classification prediction of rockburst in railway tunnel Based on hybrid PSO-BP neural network. Geofluids. https://doi.org/10.1155/2022/4673073

    Article  Google Scholar 

  92. Zhang M, Liu S, Shimada H (2018) Regional hazard prediction of rock bursts using microseismic energy attenuation tomography in deep mining. Nat Hazards 93:1359–1378. https://doi.org/10.1007/s11069-018-3355-3

    Article  Google Scholar 

  93. Zhao Y, Jiang Y (2010) Acoustic emission and thermal infrared precursors associated with bump-prone coal failure. Int J Coal Geol 83(1):11–20. https://doi.org/10.1016/j.coal.2010.04.001

    Article  MathSciNet  Google Scholar 

  94. Zheng S, He C, Hsu SC, Sarkis J, Chen JH (2020) Corporate environmental performance prediction in China: an empirical study of energy service companies. J Clean Product 266:121395. https://doi.org/10.1016/j.jclepro.2020.121395

    Article  Google Scholar 

  95. Zhou J, Huang S, Qiu Y (2022) Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations. Tunn Undergr Space Technol 124:104494. https://doi.org/10.1016/j.tust.2022.104494

    Article  Google Scholar 

  96. Zhou J, Huang S, Zhou T, Armaghani DJ, Qiu Y (2022) Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential. Artif Intell Rev 55(7):5673–5705

    Article  Google Scholar 

  97. Zhou J, Li X, Mitri HS (2016) Classification of rockburst in underground projects: comparison of ten supervised learning methods. J Comput Civ Eng 30(5):04016003. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000553

    Article  Google Scholar 

  98. Zhou J, Li X, Mitri HS (2018) Evaluation method of rockburst: state-of-the-art literature review. Tunn Undergr Space Technol 81:632–659. https://doi.org/10.1016/j.tust.2018.08.029

    Article  Google Scholar 

  99. Zhou J, Li XB, Shi XZ (2012) Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Safety Sci 50(4):629–644. https://doi.org/10.1016/j.ssci.2011.08.065

    Article  Google Scholar 

  100. Zhou J, Qiu Y, Khandelwal M, Zhu S, Zhang X (2021) Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations. Int J Rock Mech Min Sci 145:104856

    Article  Google Scholar 

  101. Zhou J, Qiu Y, Zhu S, Armaghani DJ, Khandelwal M, Mohamad ET (2021) Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Undergr Space 6(5):506–515

    Article  Google Scholar 

  102. Zhou J, Shi XZ, Huang RD, Qiu XY, Chong C (2016) Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-prone mines. Trans Nonferr Metals Soc China 26(7):1938–1945. https://doi.org/10.1016/S1003-6326(16)64312-1

    Article  Google Scholar 

  103. Zhou KP, Yun L, Deng HW, Li JL, Liu CJ (2016) Prediction of rock burst classification using cloud model with entropy weight. Trans Nonferr Metals Soc China 26(7):1995–2002. https://doi.org/10.1016/S1003-6326(16)64313-3

    Article  Google Scholar 

  104. Zhou J, Zhu S, Qiu Y, Armaghani DJ, Zhou A, Yong W (2022) Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm. Acta Geotech 17(4):1343–1366

    Article  Google Scholar 

  105. Zitar RA, Al-Beta MA, Awadallah MA, Doush IA, Assaleh K (2022) An intensive and comprehensive overview of JAYA algorithm, its versions and applications. Archiv Comput Method Eng 29(2):763–792. https://doi.org/10.1007/s11831-021-09585-8

    Article  MathSciNet  Google Scholar 

  106. Zhou J, Chen C, Wang M, Khandelwal M (2021) Proposing a novel comprehensive evaluation model for the coal burst liability in underground coal mines considering uncertainty factors. Int J Min Sci Technol 31(5):799–812

  107. Zhou J, Zhang R, Qiu Y, Khandelwal M (2023) A true triaxial strength criterion for rocks by gene expression programming. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2023.03.004

Download references

Acknowledgements

This research is partially supported by the National Natural Science Foundation Project of China (42177164 and 41807259) and the Distinguished Youth Science Foundation of Hunan Province of China (2022JJ10073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Zhou, J. Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model. Acta Geotech. 18, 6655–6685 (2023). https://doi.org/10.1007/s11440-023-01988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01988-0

Keywords

Navigation