Skip to main content

Advertisement

Log in

Intelligent prediction of rockburst based on Copula-MC oversampling architecture

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

An unbalanced rockburst dataset will restrict the accuracy and reliability of rockburst prediction based on machine learning. Therefore, a new oversampling algorithm was proposed based on Copula theory and Monte Carlo simulation to balance the dataset. This paper collected 243 rockburst cases worldwide. The predictors of rockburst used in this paper include the maximum tangential stress of the surrounding rock, the uniaxial compressive strength of rock, the tensile strength of rock, and the elastic energy index. During oversampling, Copula theory determined the predictors' joint distribution function by considering the correlation among predictors. Then Monte Carlo simulation was performed to generate enough data for oversampling according to rockburst classification standard. Six common machine learning methods with tenfold cross-validation were adopted to establish nonlinear models between predictors and rockburst grades. The accuracy rate of rockburst prediction has increased by 9.3–15.5% after oversampling. The prediction performance is better than the commonly used synthetic minority oversampling technique. Finally, rockburst predictors' importance was evaluated with the initial dataset, and the elastic energy index got the maximum value of 0.41. The proposed oversampling algorithm in this paper can reasonably overcome class imbalance and improve the prediction performance for rockburst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Copula-MC:

Copula theory and Monte Carlo simulation

SMOTE:

synthetic minority oversampling technique

σ θ :

the maximum tangential stress of the surrounding rock

σ c :

the unitial compressive strength of rock

σ t :

the tensile strength of rock

W et :

the elastic energy index

σ θ/σ c :

the stress ratio

σ c/σ t :

the rock brittleness ratio

References

  • Afraei S, Shahriar K, Madani S (2019) Developing intelligent classification models for rock burst prediction after recognizing significant predictor variables, Section 2: Designing classifiers. Tunn Undergr Space Technol 84:522–537. https://doi.org/10.1016/j.tust.2018.11.011

    Article  Google Scholar 

  • Arias G, Mesiar R, De B (2017) The unwalked path between quasi-copulas and copulas: Stepping stones in higher dimensions. Int J Approximate Reasoning 80:89–99. https://doi.org/10.1016/j.ijar.2016.08.009

    Article  Google Scholar 

  • Bernardo A, Della V (2021) VFC-SMOTE: very fast continuous synthetic minority oversampling for evolving data streams. Data Min Knowl Disc. https://doi.org/10.1007/s10618-021-00786-0

    Article  Google Scholar 

  • Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and Regression Trees (CART). Biometrics 40(3):358

    Google Scholar 

  • Camous L, Melander C, Vallet M, Squalli T, Knebelmann B, Noel L, Fakhouri F (2008) Complete remission of lupus nephritis with rituximab and steroids for induction and rituximab alone for maintenance therapy. Am J Kidney Dis 52(2):346–352

    Article  Google Scholar 

  • Cao H, Xie X, Wang Y, Deng Y (2021) The interactive natural drivers of global geogenic arsenic contamination of groundwater. J Hydrol 597. https://doi.org/10.1016/j.jhydrol.2021.126214

  • Chawla N, Bowyer K, Hall L, Kegelmeyer WP (2002) SMOTE: Synthetic minority over-sampling technique. J Artif Intelligence Res 16(1):321–357

    Article  Google Scholar 

  • Dong L, Li X, Peng K (2013) Prediction of rockburst classification using Random Forest. Transactions of Nonferrous Metals Society of China 23(2):472–477. https://doi.org/10.1016/S1003-6326(13)62487-5

    Article  Google Scholar 

  • Du Z, Xu M, Liu Z, Wu X (2006) Laboratory integrated evaluation method for engineering wall rock rock-burst. Gold 11:26–30

    Google Scholar 

  • Faradonbeh R, Taheri A (2019) Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques. Engineering with Computers 35(2):659–675. https://doi.org/10.1007/s00366-018-0624-4

    Article  Google Scholar 

  • Feng X, Chen B, Ming H, Wu S, Xiao Y, Feng G, Zhou H, Qiu S (2012) Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst. Chin J Rock Mech Eng 31(3):433–444

    Google Scholar 

  • Feng X, Xiao Y, Feng G, Yao Z, Chen B, Yang C, Su G (2019) Study on the development process of rockbursts. Chin J Rock Mech Eng 38(4):649–673

    Google Scholar 

  • Feng X, Liu J, Chen B, Xiao Y, Feng G, Zhang F (2017) Monitoring, Warning, and Control of Rockburst in Deep Metal Mines. Engineering 3(4):538–545. https://doi.org/10.1016/J.ENG.2017.04.013

    Article  Google Scholar 

  • Ghasemi E, Gholizadeh H, Adoko A (2020) Evaluation of rockburst occurrence and intensity in underground structures using decision tree approach. Eng Comput 36(1):213–225. https://doi.org/10.1007/s00366-018-00695-9

    Article  Google Scholar 

  • Gong F, Li X (2007) A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application. Chin J Rock Mech Eng 26(5):1013–1018

    Google Scholar 

  • Gong F, Luo S, Jiang Q, Xu L (2022) Theoretical verification of the rationality of strain energy storage index as rockburst criterion based on linear energy storage law. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2021.12.015

    Article  Google Scholar 

  • He M, Zhao F, Du S, Zheng M (2014) Rockburst characteristics based on experimental tests under different unloading rates. Rock and Soil Mechanics 35(10):2737–2747

    Google Scholar 

  • Jia Q, Wu L, Li B, Chen C, Peng Y (2019) The Comprehensive Prediction Model of Rockburst Tendency in Tunnel Based on Optimized Unascertained Measure Theory. Geotech Geol Eng 37(4):3399–3411. https://doi.org/10.1007/s10706-019-00854-9

    Article  Google Scholar 

  • Kaiser P, Cai M (2012) Design of rock support system under rockburst condition. J Rock Mech Geotech Eng 4(3):215–227

    Article  Google Scholar 

  • Kidybiński A (1981) Bursting liability indices of coal. J Rock Mech Geotech Eng 4(3):215–227. Int J Rock Mech Mining Sci 18(4):295–304. https://doi.org/10.1016/0148-9062(81)91194-3

  • Kim G, Silvapulle M, Silvapulle P (2007) Comparison of semiparametric and parametric methods for estimating copulas. Comput Stat Data Anal 51(6):2836–2850. https://doi.org/10.1016/j.csda.2006.10.009

    Article  Google Scholar 

  • Li D, Tang X, Zhou C (2015) Uncertainty characterization and reliability analysis of rock and soil parameters based on copula theory. Science Press, Beijing

    Google Scholar 

  • Li S, Wang S, Wu L (2017a) Quality classification of rock mass based on MCS-TOPSIS coupling model. Chin J Rock Mech Eng 36(5):1053–1062

    Google Scholar 

  • Li T, Li Y, Yang X (2017b) Rock burst prediction based on genetic algorithms and extreme learning machine. Journal of Central South University 24(9):2105–2113

    Article  Google Scholar 

  • Li X, Wang X, Kang Y, He Z (2005) Artificial neural network for prediction of rockburst in deep-buried long tunnel. In: 2nd International Symposium on Neural Networks, 30 May-1 Jun 2005. China, Chongqing

  • Liang X, Jiang A, Li T, Xue Y, Wang G (2020) LR-SMOTE - An improved unbalanced data set oversampling based on K-means and SVM. Knowl-Based Syst 196. https://doi.org/10.1016/j.knosys.2020.105845

  • Lin W, Tsai C, Hu Y, Jhang J (2017) Clustering-based undersampling in class-imbalanced data. Inf Sci 409:17–26. https://doi.org/10.1016/j.ins.2017.05.008

    Article  Google Scholar 

  • Liu R, Ye Y, Hu N, Chen H, Wang X (2019) Classified prediction model of rockburst using rough sets-normal cloud. Neural Comput Appl 31(12):8185–8193. https://doi.org/10.1007/s00521-018-3859-5

    Article  Google Scholar 

  • Lü T, Tang X, Li D, Qi X (2020) Modeling multivariate distribution of multiple soil parameters using vine copula model. Comput Geotech 118. https://doi.org/10.1016/j.compgeo.2019.103340

  • Mostajabi A, Finney D, Rubinstein M, Rachidi F (2019) Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. Npj Climate and Atmospheric Science 2:41. https://doi.org/10.1038/s41612-019-0098-0

    Article  Google Scholar 

  • Nelsen B (2006) An Introduction to Copulas. Springer, New York

    Google Scholar 

  • Pu Y, Apel D, Xu H (2019) Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier. Tunn Undergr Space Technol 90:12–18. https://doi.org/10.1016/j.tust.2019.04.019

    Article  Google Scholar 

  • Qian Q (2014) Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump. Rock and Soil Mechanics 35(1):1–6

    Google Scholar 

  • Rastegarmanesh A, Moosavi M, Kalhor A (2021) A data-driven fuzzy model for prediction of rockburst. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 15(2):152–164. https://doi.org/10.1080/17499518.2020.1751208

  • Shi X, Zhou J, Dong L, Hu H, Wang H, Chen S (2010) Application of unascertained measurement model to prediction of classification of rockburst intensity. Chin J Rock Mech Eng 29(S1):2720–2726

    Google Scholar 

  • Singh S (1987) The influence of rock properties on the occurrence and control of rockbursts. Min Sci Technol 5(1):11–18. https://doi.org/10.1016/S0167-9031(87)90854-1

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut Statistique de l’Université de Paris, Paris

    Google Scholar 

  • Szecowka Z, Domzal J, Ozana P (1973) Energy index of natural bursting ability of coal. Transactions of the Central Mining Institute, Poland

    Google Scholar 

  • Tan W, Ye Y, Hu N, Wu M, Huang Z (2021) Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm. Chin J Rock Mech Eng 40(6):1186–1194

    Google Scholar 

  • Tang X, Li D, Rong G, Phoon K, Zhou C (2013) Impact of copula selection on geotechnical reliability under incomplete probability information. Comput Geotech 49:264–278. https://doi.org/10.1016/j.compgeo.2012.12.002

    Article  Google Scholar 

  • Tang Z, Wang X, Xu Q (2021) Rockburst prediction based on oversampling and objective weighting method. Journal of Tsinghua University (science and Technology) 61(6):543–555

    Google Scholar 

  • Wu S, Wu Z, Zhang C (2019) Rock burst prediction probability model based on case analysis. Tunn Undergr Space Technol 93. https://doi.org/10.1016/j.tust.2019.103069

  • Xie Z (2010) MATLAB statistical analysis and application: 40 case analysis. Beijing University of Aeronautics and Astronautics Press, Beijing

    Google Scholar 

  • Xue Y, Bai C, Kong F, Qiu D, Li L, Su M, Zhao Y (2020a) A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria. Eng Geol 268. https://doi.org/10.1016/j.enggeo.2020a.105515

  • Xue Y, Bai C, Qiu D, Kong F, Li Z (2020b) Predicting rockburst with database using particle swarm optimization and extreme learning machine. Tunn Undergr Space Technol 98. https://doi.org/10.1016/j.tust.2020b.103287

  • Xue Y, Li Z, Li S, Qiu D, Tao Y, Wang L, Yang W, Zhang K (2019a) Prediction of rock burst in underground caverns based on rough set and extensible comprehensive evaluation. Bull Eng Geol Env 78(1):417–429. https://doi.org/10.1007/s10064-017-1117-1

    Article  Google Scholar 

  • Xue Y, Li Z, Qiu D, Zhang L, Zhao Y, Zhang X, Zhou B (2019b) Classification model for surrounding rock based on the PCA-ideal point method: an engineering application. Bull Eng Geol Env 78(5):3627–3635. https://doi.org/10.1007/s10064-018-1368-5

    Article  Google Scholar 

  • Yin X, Liu Q, Huang X, Pan Y (2021a) Real-time prediction of rockburst intensity using an integrated CNN-Adam-BO algorithm based on microseismic data and its engineering application. Tunn Undergr Space Technol 117. https://doi.org/10.1016/j.tust.2021a.104133

  • Yin X, Liu Q, Pan Y, Huang X, Wu J, Wang X (2021b) Strength of Stacking Technique of Ensemble Learning in Rockburst Prediction with Imbalanced Data: Comparison of Eight Single and Ensemble Models. Nat Resour Res 30(2):1795–1815. https://doi.org/10.1007/s11053-020-09787-0

    Article  Google Scholar 

  • Yu H, Liu H, Lu X, Liu H (2009) Prediction method of rock burst proneness based on rough set and genetic algorithm. J Coal Sci Eng 15(4):7

    Article  Google Scholar 

  • Zhou J, Guo H, Koopialipoor M, Jahed A, Tahir M (2020) Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm. Engineering with Computers 37(3):1679–1694. https://doi.org/10.1007/s00366-019-00908-9

    Article  Google Scholar 

  • Zhou J, Li X, Mitri H (2017) A critical survey of empirical methods for evaluating rockburst potential. In: 15th IACMAG, 19–23 October 2017. China, Wuhan

  • Zhou J, Li X, Mitri H (2016) Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods. J Comput Civ Eng 30(5). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000553

  • Zhou J, Li X, Shi X (2012) Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf Sci 50(4):629–644. https://doi.org/10.1016/j.ssci.2011.08.065

    Article  Google Scholar 

  • Zhou X, Huang X, Liu P, Li T (2018) A probabilistic method to analyze collapse failure of shallow rectangular tunnels. Tunn Undergr Space Technol 82:9–19. https://doi.org/10.1016/j.tust.2018.07.029

    Article  Google Scholar 

Download references

Acknowledgements

Research in this paper is supported by the National Natural Science Foundations of China (grant numbers 41877239, 51379112, 51422904, 40902084, and 41772298), Fundamental Research Funds of Shandong University (grant number 2018JC044), and Shandong Provincial Natural Science Foundation (grant number JQ201513).

Author information

Authors and Affiliations

Authors

Contributions

Yiguo Xue contributed to supervision, project administration, and funding acquisition. Guangkun Li contributed to conceptualization, methodology, writing—original draft, writing—review and editing, software, and investigation. Zhiqiang Li performed data curation. Peng Wang performed validation. Huimin Gong performed investigation. Fanmeng Kong carried out formal analysis.

Corresponding author

Correspondence to Yiguo Xue.

Ethics declarations

Competing Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Li, G., Li, Z. et al. Intelligent prediction of rockburst based on Copula-MC oversampling architecture. Bull Eng Geol Environ 81, 209 (2022). https://doi.org/10.1007/s10064-022-02659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-022-02659-2

Keywords

Navigation