Skip to main content
Log in

Experimental determination of basal gas pressure and effective coefficient of friction for dry granular flow

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Knowledge about the interaction between granular flow and fluid (gas) is essential for understanding dynamics. In this study, a series of experiments designed with different conditions were conducted using a flume configuration to investigate the dynamics of particle flow by directly measuring the basal gas pressure, normal force, and shear force. The results show that the basal gas pressure is a positive value, reaching and remaining at the bottom of the slider before the granular flow, which increases with inclination angle but has little support for the solid skeleton of the flow. (The ratio to normal pressure is ~ 2%.) After the flow depth decreases, the gas pressure shows a negative value, which may be the result of the slight expansion of the sliding body. Ultimately, an unstable negative pressure can be generated after the main body passes through. The dynamic characteristics of our experimental flow are strongly related to particle size, as shown by the inverse relationship between the effective basal friction coefficient and particle size, which we explain with force fluctuations. For granular flow with a high content of coarse particles, the fluctuations of the normal force and shear force (normalized standard deviation) and effective basal friction coefficient are all negatively correlated, which shows that a high-amplitude pulsating force promotes particle propagation, and shear force fluctuation plays an important role, which is approximately 2–3 times the normal force fluctuation. The generation of a high-amplitude pulsating force is attributed to high-frequency, dense particle collisions at the grain scale, which is mainly determined by the grain size and magnified as the angle increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in this paper.

References

  1. Allstadt KE, Farin M, Iverson RM, Obryk MK, Kean JW, Tsai VC, Rapstine TD, Logan M (2020) Measuring basal force fluctuations of debris flows using seismic recordings and empirical green’s functions. J Geophys Res Earth Surf 125:e2020JF005590. https://doi.org/10.1029/2020JF005590

    Article  Google Scholar 

  2. Arran MI, Mangeney A, De Rosny J, Farin M, Toussaint R, Roche O (2021) Laboratory landquakes: Insights from experiments into the high-frequency seismic signal generated by geophysical granular flows. J Geophys Res Earth Surf 126:e2021JF006172. https://doi.org/10.1029/2021JF006172

    Article  Google Scholar 

  3. Berti M, Genevois R, Simoni A, Tecca PR (1999) Field observations of a debris flow event in the dolomites. Geomorphology 29:265–274. https://doi.org/10.1016/S0169-555X(99)00018-5

    Article  Google Scholar 

  4. Breard ECP, Dufek J, Roche O (2019) Continuum modeling of pressure-balanced and fluidized granular flows in 2-D: comparison with glass bead experiments and implications for concentrated pyroclastic density currents. J Geophys Res Solid Earth 124:5557–5583. https://doi.org/10.1029/2018JB016874

    Article  Google Scholar 

  5. Brodu N, Delannay R, Valance A, Richard P (2015) New patterns in high-speed granular flows. J Fluid Mech 769:218–228. https://doi.org/10.1017/jfm.2015.109

    Article  MathSciNet  MATH  Google Scholar 

  6. Cagnoli B, Romano GP (2012) Effects of flow volume and grain size on mobility of dry granular flows of angular rock fragments: a functional relationship of scaling parameters. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008926

    Article  Google Scholar 

  7. Cagnoli B, Romano GP (2012) Granular pressure at the base of dry flows of angular rock fragments as a function of grain size and flow volume: A relationship from laboratory experiments. J Geophys Res Solid Earth. https://doi.org/10.1029/2012JB009374

    Article  Google Scholar 

  8. Cruden DM, Hungr O (1986) The debris of the frank slide and theories of rockslide–avalanche mobility. Can J Earth Sci 23(3):425–432. https://doi.org/10.1139/e86-044

    Article  Google Scholar 

  9. Davies T, McSaveney M (2012) Mobility of long-runout rock avalanches. In: Stead D, Clague JJ (eds) Landslides: Types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 50–58. https://doi.org/10.1017/CBO9780511740367.006

    Chapter  Google Scholar 

  10. De Blasio FV, Elverhøi A (2008) A model for frictional melt production beneath large rock avalanches. J Geophys Res 113:F02014. https://doi.org/10.1029/2007JF000867

    Article  Google Scholar 

  11. De Blasio FV (2014) Friction and dynamics of rock avalanches travelling on glaciers. Geomorphology 213:88–98. https://doi.org/10.1016/j.geomorph.2014.01.001

    Article  Google Scholar 

  12. Dent J, Burrell K, Schmid D, Louge M, Adams E, Jazbutis T (1998) Density, velocity and friction measurements in a dry-snow avalanche. Ann Glaciol 26:247–252. https://doi.org/10.3189/1998AoG26-1-247-252

    Article  Google Scholar 

  13. Di Luzio E, Bianchi-Fasani G, Esposito C, Saroli M, Cavinato GP, Scarascia-Mugnozza G (2004) Massive rock-slope failure in the central apennines (Italy): the case of the campo di giove rock avalanche. Bull Eng Geol Environ 63:1–12. https://doi.org/10.1007/s10064-003-0212-7

    Article  Google Scholar 

  14. Duan Z, Wu Y-B, Peng J-B, Xue S-Z (2022) Characteristics of sand avalanche motion and deposition influenced by proportion of fine particles. Acta Geotech. https://doi.org/10.1007/s11440-022-01653-y

    Article  Google Scholar 

  15. Farin M, Mangeney A, Roche O (2014) Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. J Geophys Res Earth Surf 119:504–532. https://doi.org/10.1002/2013JF002750

    Article  Google Scholar 

  16. Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24. https://doi.org/10.1146/annurev.fluid.40.111406.102142

    Article  MathSciNet  MATH  Google Scholar 

  17. Gauer P, Issler D (2004) Possible erosion mechanisms in snow avalanches. Ann Glaciol 38:384–392. https://doi.org/10.3189/172756404781815068

    Article  Google Scholar 

  18. Holyoake AJ, McElwaine JN (2012) High-speed granular chute flows. J Fluid Mech 710:35–71. https://doi.org/10.1017/jfm.2012.331

    Article  MATH  Google Scholar 

  19. Hsu L, Dietrich WE, Sklar LS (2008) Experimental study of bedrock erosion by granular flows. J Geophys Res 113:F02001. https://doi.org/10.1029/2007JF000778

    Article  Google Scholar 

  20. Hsu L, Dietrich WE, Sklar LS (2014) Mean and fluctuating basal forces generated by granular flows: laboratory observations in a large vertically rotating drum. J Geophys Res Earth Surf 119:1283–1309. https://doi.org/10.1002/2013JF003078

    Article  Google Scholar 

  21. Huang Y, Zhang W, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9:275–283. https://doi.org/10.1007/s10346-011-0285-5

    Article  Google Scholar 

  22. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  23. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. https://doi.org/10.1029/97RG00426

    Article  Google Scholar 

  24. Iverson RM, Logan M, LaHusen RG, Berti M (2010) The perfect debris flow? aggregated results from 28 large-scale experiments. J Geophys Res 115:F03005. https://doi.org/10.1029/2009JF001514

    Article  Google Scholar 

  25. Iverson RM, Vallance JW (2001) New views of granular mass flows. Geol 29:115. https://doi.org/10.1130/0091-7613(2001)029%3c0115:NVOGMF%3e2.0.CO;2

    Article  Google Scholar 

  26. Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the m 7.9 denali fault, alaska, earthquake of 3 november 2002. Eng Geol 83:144–160. https://doi.org/10.1016/j.enggeo.2005.06.029

    Article  Google Scholar 

  27. Kaitna R, Palucis MC, Yohannes B, Hill KM, Dietrich WE (2016) Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows. J Geophys Res Earth Surf 121:415–441. https://doi.org/10.1002/2015JF003725

    Article  Google Scholar 

  28. Li K, Wang Y, Cheng Q, Lin Q, Wu Y, Long Y (2022) Insight into granular flow dynamics relying on basal stress measurements: From experimental flume tests. J Geophys Res Solid Earth 127:e2021JB022905. https://doi.org/10.1029/2021JB022905

    Article  Google Scholar 

  29. Louge MY, Keast SC (2001) On dense granular flows down flat frictional inclines. Phys Fluids 13:1213–1233. https://doi.org/10.1063/1.1358870

    Article  MATH  Google Scholar 

  30. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat Commun 5:3417. https://doi.org/10.1038/ncomms4417

    Article  Google Scholar 

  31. Mancarella D, Hungr O (2010) Analysis of run-up of granular avalanches against steep, adverse slopes and protective barriers. Can Geotech J 47:827–841. https://doi.org/10.1139/T09-143

    Article  Google Scholar 

  32. McCoy SW, Tucker GE, Kean JW, Coe JA (2013) Field measurement of basal forces generated by erosive debris flows: DEBRIS FLOW BASAL FORCE. J Geophys Res Earth Surf 118:589–602. https://doi.org/10.1002/jgrf.20041

    Article  Google Scholar 

  33. McElwaine J, Nishimura K (2001) Ping-pong ball avalanche experiments. Ann Glaciol 32:241–250. https://doi.org/10.3189/172756401781819526

    Article  Google Scholar 

  34. McElwaine JN, Turnbull B (2005) Air pressure data from the vallée de la sionne avalanches of 2004. J Geophys Res Earth Surf. https://doi.org/10.1029/2004JF000237

    Article  Google Scholar 

  35. Miao T, Liu Z, Niu Y, Ma C (2001) A sliding block model for the runout prediction of high-speed landslides. Can Geotech J 38:217–226. https://doi.org/10.1139/t00-092

    Article  Google Scholar 

  36. Penna IM, Hermanns RL, Nicolet P, Morken OA, Dehls J, Gupta V, Jaboyedoff M (2020) Airblasts caused by large slope collapses. GSA Bull 133:939–948. https://doi.org/10.1130/B35531.1

    Article  Google Scholar 

  37. Preuth T, Bartelt P, Korup O, McArdell BW (2010) A random kinetic energy model for rock avalanches: Eight case studies. J Geophys Res 115:F03036. https://doi.org/10.1029/2009JF001640

    Article  Google Scholar 

  38. Roche O, Montserrat S, Niño Y, Tamburrino A (2010) Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows. J Geophys Res 115:B09206. https://doi.org/10.1029/2009JB007133

    Article  Google Scholar 

  39. Roche O, Niño Y, Mangeney A, Brand B, Pollock N, Valentine GA (2013) Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology 41:1107–1110. https://doi.org/10.1130/G34668.1

    Article  Google Scholar 

  40. Roche O, van den Wildenberg S, Valance A, Delannay R, Mangeney A, Corna L, Latchimy T (2021) Experimental assessment of the effective friction at the base of granular chute flows on a smooth incline. Phys Rev E 103:042905. https://doi.org/10.1103/PhysRevE.103.042905

    Article  Google Scholar 

  41. Savage SB (1984) The mechanics of rapid granular flows. Adv Appl Mech 24:289–366. https://doi.org/10.1016/s0065-2156(08)70047-4

    Article  MATH  Google Scholar 

  42. Shreve RL (1968) The blackhawk landslide. Geological Society of America, Special Paper 108: 0–47. https://doi.org/10.1130/SPE108-p1

  43. Turnbull B, McElwaine JN (2008) Experiments on the non-boussinesq flow of self-igniting suspension currents on a steep open slope. J Geophys Res 113:F01003. https://doi.org/10.1029/2007JF000753

    Article  Google Scholar 

  44. Turnbull B, McElwaine JN (2010) Potential flow models of suspension current air pressure. Ann Glaciol 51:113–122. https://doi.org/10.3189/172756410791386490

    Article  Google Scholar 

  45. Yan K, He J, Cheng Q, Zhang J, Fuentes R (2021) Experimental investigation on the interaction between rapid dry gravity-driven debris flow and array of obstacles. Landslides 18:1761–1778. https://doi.org/10.1007/s10346-020-01614-0

    Article  Google Scholar 

  46. Zhang M, Yin Y (2013) Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in china. Eng Geol 167:37–58. https://doi.org/10.1016/j.enggeo.2013.10.010

    Article  Google Scholar 

  47. Zhang Z, Walter F, McArdell BW, De Haas T, Wenner M, Chmiel M, He S (2021) Analyzing bulk flow characteristics of debris flows using their high frequency seismic signature. J Geophys Res Solid Earth. https://doi.org/10.1029/2021JB022755

    Article  Google Scholar 

  48. Zhang B, Huang Y (2022) Impact behavior of superspeed granular flow: Insights from centrifuge modeling and DEM simulation. Eng Geol 299:106569. https://doi.org/10.1016/j.enggeo.2022.106569

    Article  Google Scholar 

  49. Zhu Y, Delannay R, Valance A (2020) High-speed confined granular flows down smooth inclines: scaling and wall friction laws. Granul Matter 22:82. https://doi.org/10.1007/s10035-020-01053-7

    Article  Google Scholar 

  50. Zhuang Y, Xu Q, Xing A (2019) Numerical investigation of the air blast generated by the Wenjia valley rock avalanche in Mianzhu, Sichuan, China. Landslides 16:2499–2508. https://doi.org/10.1007/s10346-019-01253-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development program of China (Project No.2022YFF0800604), the Major Program of the National Natural Science Foundation of China (Grant No.41877266; No.42090051), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2021373), and China Railway Design Corporation (Project No. 2020YY340408).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongpo Wang or Siming He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, D., He, S. et al. Experimental determination of basal gas pressure and effective coefficient of friction for dry granular flow. Acta Geotech. 18, 3889–3904 (2023). https://doi.org/10.1007/s11440-023-01817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01817-4

Keywords

Navigation